"ಮಾರ್ಪಿನ ವಿಧಗಳು" ಆವೃತ್ತಿಗಳ ಮಧ್ಯದ ಬದಲಾವಣೆಗಳು
KOER admin (ಚರ್ಚೆ | ಕಾಣಿಕೆಗಳು) ಚು (Text replacement - "|Flash]]</mm>" to "]]") |
|||
(೨೮ intermediate revisions by ೩ users not shown) | |||
೨೧ ನೇ ಸಾಲು: | ೨೧ ನೇ ಸಾಲು: | ||
=ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ = | =ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ = | ||
− | + | [[File:typevar.mm]] | |
=ಪಠ್ಯಪುಸ್ತಕ = | =ಪಠ್ಯಪುಸ್ತಕ = | ||
+ | 2.1ಕರ್ನಾಟಕ ಸರಕಾರ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 9 ನೇ ತರಗತಿ<br> | ||
+ | 2.2ಎನ್.ಸಿ.ಇ.ಆರ್.ಟಿ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 8 ನೇ ತರಗತಿ | ||
ಪಠ್ಯಪುಸ್ತಕದ ಲಿಂಕ್ ಗಳನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಲು, ದಯವಿಟ್ಟು ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ: | ಪಠ್ಯಪುಸ್ತಕದ ಲಿಂಕ್ ಗಳನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಲು, ದಯವಿಟ್ಟು ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ: | ||
೩೦ ನೇ ಸಾಲು: | ೩೨ ನೇ ಸಾಲು: | ||
=ಮತ್ತಷ್ಟು ಮಾಹಿತಿ = | =ಮತ್ತಷ್ಟು ಮಾಹಿತಿ = | ||
==ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು== | ==ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು== | ||
+ | [http://www.youtube.com/watch?v=bqU4SlwnxfY 1.ಇದರಲ್ಲಿ ನೇರ ಮಾರ್ಪಿನ ಬಗ್ಗೆ ಉದಾಹರಣೆ ಸಹಿತ ವಿವರಿಸಿದ್ದಾರೆ.]<br> | ||
+ | [http://www.youtube.com/watch?v=0xnWmI69NK0 2.ಇದರಲ್ಲಿ ಸಮಾನುಪಾತ ಮತ್ತು ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧವನ್ನು ಕೊಡಲಾಗಿದೆ.]<br> | ||
+ | [http://www.mathsisfun.com/algebra/directly-inversely-proportional.html 3.ನೇರ ಅನುಪಾತಕ್ಕೆ ಮತ್ತು ವಿಲೋಮ ಅನುಪಾತಕ್ಕೆ ಅನೇಕ ಉದಾಹರಣೆ ಗಳನ್ನು ನೀಡಿದ್ದಾರೆ.] | ||
+ | |||
+ | ಮಾರ್ಪಿನ ವಿಧಗಳು ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು; ನೀಡುತ್ತದೆ.<br>{{#widget:YouTube|id=jvHk48-Vw-M}} | ||
+ | |||
==ಸಂಬಂಧ ಪುಸ್ತಕಗಳು == | ==ಸಂಬಂಧ ಪುಸ್ತಕಗಳು == | ||
=ಬೋಧನೆಯ ರೂಪರೇಶಗಳು = | =ಬೋಧನೆಯ ರೂಪರೇಶಗಳು = | ||
− | |||
− | ==ಪರಿಕಲ್ಪನೆ #ನೇರ ಮಾರ್ಪು - | + | |
+ | ==ಪರಿಕಲ್ಪನೆ #ನೇರ ಮಾರ್ಪು -1== | ||
===ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು=== | ===ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು=== | ||
ನೇರ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯು ವುದು .ಅನು ಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು . | ನೇರ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯು ವುದು .ಅನು ಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು . | ||
೫೬ ನೇ ಸಾಲು: | ೬೪ ನೇ ಸಾಲು: | ||
*ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | *ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | ||
+ | <ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAFZgIkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFGHbniiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAdDUlEQVR42u1dWVQUWZoOd8tdEFkTMpNVdlRURBEU2QSl3FEULRTFhR1EUFBcwRU33AEXrLKqrK27tZeqrp7p7jkzU2emZk4/zZnp0w9zzrzM25wzZ15m/onvhpFmRtwbJApYkPHwn4iMvBFxI/P/4t//K0mSRCaZZJKQzB/BJAH5+pJktZKUkkLSsmUkxcSQlJxMUloaSePGKWP8/ZUxy5eTNH26ck58PEmxsa7XUsfZbCTNnu16j6QkkhITSUpNVY75+ZG0cCFJERFvzsMcnMeHhpI0dSpJISHKfceOVT6DcD7OWbr0pw0Q+uGH9/LHTpksUWKERB9mSFS5VaKOwxI9apPo03aJvr4s0ecdEj05LVG7fPzwFonWrZBoQbRy3oCf8fu/Z8T7HOLrT//z6z+MXIAUF5N0+jRJeXkklZSQtGMHSaWlJEVGkpSfr4zZvp2kLVtIKiwk6eBBZezvfkfS3r2uQFDH7dtHUnk5SXFxyvHMTOU80L17yrGjRxXCsbIy5bycHNfxOL5rF0nV1QpocV/MF8fw/caNJK1f/9MEiAoMZ4Bgf6385sH2P7/9dlDvN3miREU5EvXJTP+rGxL99o5EX1yU6Kn8+W6zRJerJTpRpqertRLdPy7RszMSfXVJOe97mfrkz0XZynXdBYnz/j/ef8r2HzWddPluxFFtLUkdHSRt20bS4cPKfmsrSceOKUyIMfX1CohAYOo9e0h6/FgZ6+X15lrquJ07SbpyRWFqSBkwckuLAjzcIypK2XZ2KuNxP/U8XEcdj+t99BFJVVXKfHDO7t3KMcy7uZmkAwd+mgCZMnkyTRg/Xnf81fXrNF4Vze9IQXMlatgp0WeyVHglg6L3pERt+/hA6KiYTX/oqmD7D5rj6emJVLrXFMe2d49G68afLlfA9d1tBWj18n18vY0liAoEbP948yHb/9/v/pb+6+XvRpfaNWaM8rbGVjQmMJCkoiLlbS8aA2aG2uZ8LDdXkQCDMU9ca6htkHUrVlCrLMoGSkmyCA6G7qi53sxp0955wtkpCih+0SnRtXo+IHj0x65KB1i+u7aHuhrCqetIOH3dUdjvubePKpLpmysSpS8wbZN+ydtbsRE4L0kHZWUptozzMdgSc+aMfiN93CBJCWdaECXbDhdk2+GU+6BwSJDDs+ifetoYOF5e2kqvLhXRi7O59Kfec/R1e6Hb14GE+vKiIlXiI0wgmF6snwBF22X16YREH58Vq1A8Ol40kZo/nEKNOTOpYbkP1SQEUlWMhaqiQqgqOphq4oOoYZkP+x7jjm+f6Pa1oYJBmsDmCQ00mcgEyHugWdMl6pJVm+fnFYbsj2lbd4+lxqxZVC0zf2WYjaoirVQtU9W8EKqJs1DtggBXmh/IjqvjKsNtVBFqZwBqzJ5FraVj+73n+cOKqtfV6L5B70kU5DOXMhcsYvsRlmC2/WDSpEG/z7wQG+UtSaXkqOjXTpuJdOlAleP7L89cpIykhaMHIHDRfnlJorMHjRm0Zdc4Jh3A1GDw6phgPRBkal0xj37b2uTY4titTVnU+WE6NaeG6caz6wEsETYmZVqKJxjOA16y39ySKDzYBIUz2QMC6bO2dgaKyo1bqWhVNq1NTROOj7SEUHriAkbRVhs7dnj9Fka4lmjM3NleFB8aTnvzC9nn1QsX0+nScrY/ZswYWhobTwVLl48OgOxcI1HPiX6khfx2r1vkR1XhVqYq8UChpe9PNLts/9L7hOqTLdRXtt3wvGpZylTa7bLECWCANLJPXl6TqCDNBIZKYNi7dc0Ubw+jqo1FjNHLCzdSrC1UKAkgcUDqmIoNW12kDm8Mjn3Seo72rCkkPy9vBsQfH/SxfUgxfO5pbB3ZABk/TqIzssS4VmcAjj1jmMSAtHAXGKCWtCj64dIFas9dxLaQJL8/fZJJkauFK9y6Rk2Chalgdcl+huoXbKXWvSY4vGfMpJXzk9mbPkF+u6vHd+cW0LK4RNMGGQj5eUv0sBUuWDE4GrNnymoPgGFxi6HrZRujNT6EzsTY6MK8MLoWEUHXIyIdhM8d80LpdKyNWuKDqW6+e2CrjgtiNk596lwGWN5c7zQp3rZpU0yQWP1c3f1ZyUsoLSHJBMhAjHGkfRhJjdqkAKF94UyNSUGM6W+GR9GtsCi6FhlJVyLD6XJUOF2UQXJF3gIcV6Mi6JK8j+86IxXg3AmdJ58XSeej7dSQFNi/RJGBWhVhFapdFyslenFBkYymumV6sd5arXrYItGxPWLPVFVkCHPRGjErQHFDZm4A41JUGF2NdJUW7hKkCgBzO2we3ZKvBeljCBIZSJBqzRumCEGCVBaTyUyAvBVBpYK+zmOuY5snM1Wm1uBtfirWSl0yM0NCdLoBio8zs+mz3HzHtr/xkCgAy4m4EDFQZFUOXq+GDC/uc8BV3WLaJCZABkq1xRKdFAT+mtZOU8Axnw8O2Ba3ZRUKkqJzANLiXy5cox+Pn3Js3TpPVtMgTbrk+x1LsBioXEFUuzCA+zwPZCmye63nMZe/9xxmg9j8A2j29BmO476zvShJfvnge3evhdy+ywer+0lafRP/KF2zjgLm+IxMgGzJkqhtv4HkCBWrNlChrsmMq9oTA6GX23bSX5VX0svtJWx7PTLKffVLBsodWZq0yzaKUJrI0q4u2V/o3Uqb71kA2b46h7asXE37CtZT+bqNFGcPY8fhoj344SaaOXWaW7EQeL42pWdS8epc4Rht/GPf2vXUVLx75AEEQcALleLAHwMHR3LAywQ7YyDAuBUaR91BS+lRQDr1+a6mZ3Oz6WOfHHmbI3/Oko+vkL9PZePcvSZULkguIUgSg6hhJV/dQlYAspA9BSD1W3cwht2ZvYauHKphkW7ELjauWEUtJXt0Hi5RnKNm83YqK/iQchalCMeo8Y9fXrhOPrNmMzDVbSkeeQC5JevkTbv53ip4hWo4NsdRmengZbrsBjju2ObTE79VMhBy6ROfPAYMfH7sn66jp/JxfP/JnDXy+Dx66ptJ96wL+rdNIqLYfETeruoYCzXlT9c9IzID4AL2VH1+BMZAhhcgG1bKtsd2vvSAp6omIUgIDrhkjZj2XshCmdHz6JksIR77Z+jA8E3yFvo2Zx99s2gr2z4JzOCAJoNJGFznoSXF8H43cE97tBAkSIiEuqh9Tni1FkZ7JkBGYAxk+AACl+7NI7KNUaoHxxFZJUGmLS/Y1x84btsTmbSA+sSTEir9W9tt+r7gEP359B227QvONBzfNzeLSZb7IYsMvFxRdDc0mguQOtlgh4sarmptSgqyk03vkAkQF6oskujgZn5eFRIDeUwGN6uRWtUj2w8AhxGjq/QPZSforzdU0z9XnGPbT6Py3ToP9gpUL6GdI4OkM4Jvk9Qt8WM5Y9pnviG/KDauMpnPBIhTtPxyjWyEcwKCdYt9uXlVkBpGkuOpXyazH/pj8N7AdOoOTqeH1nR6ALIpW3zGcXzf3zVUm+ZWaCzf7gmFdytUmOzIqzVBSa8ZZR+kHghDW/c/9A/QKjPEvvV8r1UFx6XbFmfV5U45E9QpAMQIFFow8MgxxqZ8hrdLDJQMBhI4Abg2kKxq8eIk6gtAXycv0eGto595EfOAtyolJo4Z6DFWO/NmwRYZh1Y9A+gcIwLCiAYIComu1AgM86RAliWrZSq8kUUBwKey1Hgq8EqBwVWmfxjiCobe8Ez6U+tl3b4zWO67ARSApIvjFobRLrJHQE2FU3XPj4TG0Q4QuFvh6kVBU0lOPu3IyqPSvLUslpGfsrxfhv/28i36v9/+HRcsoH/t+2JkAwQ9p9B7Sic9iico0XINI52LsQtzqXoCl7P4BY9xeyxvJAGPXq0tox+Ptuv2eVLlvl2+XpAxSG6GR3OlCC8tBbZIdbSFm4aSOMpr22u3FFPH/gralpnD6kGw31qyl47tKGXBQncAwuscg24x//3L3498gJw7JNH+DXqAoABJ69ZFMBCBOESttcx317rgtQtXz7CQFkaq1LPEAvq+uJr+/UEfvVi+1bHfF58vPAcggY0iUreg5vFAfF/k1Vrsx1JotHGR5o88z2ZAlR8kyhij1kGeYKTDCBWpVzzpgZR0kfRAbEIEjofWoSFIJBFInvitZFF6HZBlgJyN0Xvl6pf7UC0nDaWn1TSyPRYgqxZJdIjj2oVXp8KuZyIkBPLAgaAd4hJctapfRs+gXvtqehwmS5+wXCfKYce75e+NzjdStyBFboTP46pa3ITGOAu351aYxWREjwTIqXKJdhfoAdKQOpeqY12Nc3iAEHjjS481fE+Vgc3RbVvlBIocehSapaFsdvxJWB4bg/FCkISKDXcc1wHaHsOPsCf76WpHzslqVvV2kxG13Um0nUpGJUAuVvFjHzz1CqrVVU7c44Flifym1ksPI8mhMr8zIL5KK6ZvNx6mn2ftdtl/A5ZctjVyB3Mj7r5ZOikCLxyKuLTP2JDuzVWzIEVMgLh2J9F2Khl1AEGd+alyfpVghU3PPLcE0oOXQtIbJJIeGa+Bka2TGM/nr6dvVu6kvylrdtl3HvM4NIedL1K1HgmCiry8La7Ld6G/rGbpYyJolm0CxLU7ifP+qAQIEvLqdnCKoQqmUWWETZeQKLI/nnPUK5FqxQOGswT5y/Vu+uPeZpd9nurFkyRGUgRBS+28u20x3EYQ8Nxp87PQsGLOLBMgHmWDrFnGj38gMbF6nmusALXfvMg5XLvaXKtH/srbXMvAMLh7BeBgZJcZ35bzhuw5wrGQIj0cmwT35QLEN1OnZj2wR7NuKTw7RJvlCxUrNtRkRiNCRSJULkgW1H5oqwgHsYJweABSuk6iMk56Sd0if5afpHXv8mIfcKWC3AkICqWHFhgulCsECk/VAkB6g/hxEW0dCVSsc5zqw/oUX12tyI0GxeM3mhl8V04+FS5LZ43cRFWBWHAIIHAm57JcVCeiStH5umoV4SBWEA4PQJB/tStfD5BqTlq72k1EZ39wAoM81arHnilLEIHkEILDWZpkcwHSbVupi4sg7sK3Q1xjIlAZUf3Ii4dsP5hLxw5MoqKba6m0fSlrXVqSP/qrC1H9p5bZ8qoCjchrxgzm1Vo1P5nld2mrCFHSO0gVhMMDEBjovBhIZaQ+FQOltNwuJJxUdpH0gIo1EHCcWFdBPWF5dHxDjQMkVWWtdDd+nZMtkkWnsnZRS8E+uhOZRU0bDrJ8LczjfPouqi5peu3qXUHnMkrYnMv2l9OhXbsdIMHzFe1eSzu2ZTk8WavP1lNj5UzKf7Kf9pxbTCcPTaDje0w1SiUY5jerjrDS3FFrgwAgjbvcc/HeEsY/8twGCF965AoBsr+qna4s20lXU4qpOyKfqVrHN1XpDPbyAydox7Er1Jm8jc5m11C3fRN9Mnc9Ve+5SGV13fQssJw+9y6l2o9uy+pXIbUVnKX2VSfpqWUffT63jG6GlNCuhk9pb+Uz6gmopd6Qaurxa6C+BWUudH9tKvX1SYw8HSATJ0ygDWkrR7eRfkqwZMFAIujP5+iLmu6/I0AKp6ZQxdQN9HJ2h4Nezbqo7Hu1M3o1+4Ky9eqgn886y+ib2Sfpizl19MKnjr6epdCXsw8ycIBeeO1hALlvle0R2zJGj4JXUGtckiZx0Zdq5uvbA3XWmsBwpiGyJ0YZQLzfFSCu4OgKWUVJU/ypxDuaLltW6CWL1g4JzXHbkwVngi7lxB7NNdJ5ALlaZ4LCo9y8MNKxyKaWEdC5xH0b5F1VLFcAnAlMfVMC7JvUj6HOj4eIAALiVRrqoulIWlygj6a3V5jM6FEAgQQ5sJEDkCEw0rkGusPFm+sGQHLdioWoFYo66eG/kuvF6uT0z0JXeBjq2uWoURJgMqMHAQQlthVbBFWEmiUM0C2RBxDW08rfNQ6C9HM9SDKYOtSfFHEGSL1fqlMshOfmzeXXiFj46tW9kGRNHISfj4US3Ma8GS6/yb1jyuq9JjNKrOkbiqrUz+ryadpl1UY8QFBJyEs1qV/mQ9XRIboqQl4mL7oeanOxkD3Li6SrKpERSB5as+iiJY3RfetqYQxEpF7dE2T1Yo43w2I0kfQYaou1cppdB9CxjR/oevcmesCque4EC1mSa3mlo7BKXT7Nua3oqADIkji+mxerymrtkOYEC90N05ew3pSPfepdoDfUOQDpdiQqZrmlbvGBoRBS4EUJi/yM3tW6uT+yxrG+XrouJwlB1LJzvMtv8rhNSe70hFak/QUL58ycRY+b25gkUZdP+6T1rEtb0VEBEGuAbIfs53cyOWzRR5hRZORuLQhfzVIi6oYgcYOgWvXYMt0uwYV61RuYxklWjOW3AYoO1v0mn7abqpVHFkzdbBS4eq163Zx1BuEY68hzQjKgO1KEGeyvDey3BQcMfmHRlKCqUNsvi9XVc5rJodtiTVKAR3Y3MQEiWCCH12oUNRHahg1Y8wNuUV6H9uccNavboIuJIklyDdPftTYH1CqcJyy7tYjLbrVz7rXFsRR+ngQ5uma6rnEDVqIyGdEDAQJDvYWzghTKTnlFU3cFahbq0bVZvarLV1RZ2P3as8VKbkPFGbtPXn//UFCbjnuIbA80ur5tT+DWgnAbWkeF6Bb+RIfF+VEmI/bnxdIukDOMJbtD97BY5RUNq7lqVnAYV83q4nizboXFco11kUdL3LQhR9e04WE/TRtEniu4n3nGOUDOU69YNWFCoO53+LzDc5hf68USlmpzvFjaBXKGsWR3aH8UBMG4bX84a4HA6wP3qLCjIscWQX1G/yB5OwI4RL17EeW/FRbD9V7Vzucv+AkPnvNvcLpcWS/FkxbUcfZi8YjnxeppbNUtkDOMJbtD+6OgcIrr7s2dwVWzEDTEwpw6kMiSRbFFMrgdTgYbJPcNwIGO77w6dID7wjx+E2u4ttHJXltqm73UVKs8urs7aq3RYpMrReDN0sQKUMf90MaXIl32eG4C42CCRLU5RG1+lI7yGdz5PbLyXbtwSDSkzdE9/5eXPKvDO9QelMWqBU+8QOH0KVPYGBHBDuGdC3WMN378uHHCgCRslL7jp6l5x0fvt7v79XqZITjGetO6aVwpgs6EIoP9QfAS4Zogj9Q2pLa367ho3G5UiXlAevDmhbjHmVj+4qNVYVadcX7+sKxeNXpeXTlUKFQHigKFUyZPZmNEhFoR3rkACG88OsiLqhdh06CBdnZyyvsFCNIoUHfNNdblCfPWJcQyz12croXMjRqYZrhwDtrzOJfIsvVBtIAJedPTVx1n1NUd9g/uKeqkqFYP6gKDsRZd7hXoZ1clCvDxPJXFneWc36UhwxBUIw7PD4Mevbyln5s3fcCVIlC1oNPfFGT6PgheLOzX69LkIcgVHA80IOkNcmeVqWxuvYeatcvcuhzDHOojKii1z4wadDTV8zRwaJdz7o/epiHDEFQjDs+Pg9QTLGAp8mjVcqTIEflYjzXWYEXbJFZ1yIuRDA5lMBD2BC3jL+Qpg/dxCD/nSol7WHWtRkG/uKasuuVpANEu52zYePAdGjIMcjXi8P1AqBE5c4CTn7VjPB0ODOcy2fH4YOq1xRospBntUH8GExzKeurZzDEgAscTGRzHE4KFS6/VCdqMYhls0ztkerF0hLfmoza+FGkqnMbN0QKhAVuvLElE6pay2m0CaxOkpMdnvLXEwDUAtrvW+YYLdwIc3MZwr71WkB6853x1w1yb0ASIAWFdPuRo8ZgH1Xa8ikNV3YKufztsnuH65XdsiQ5GR2Np0XJtzm1DP2agyGGqGtQ2o+vDu9YjS7QjSfxcK6iKqLvXthcFPTop0Y48k+lMgPSzqE6vzCjnD/FBgvXStZ0XnQ13JDSiGYIREzuDBUVXSAuBGoYYBiRM3+uoPFavhX3RFRrv1vUQn0GlINcgf01wOGB5Oe1zXas3s3ZNgAwgR+uzDona9nFAsmcMVcpvYG22rzOhlBVBuTv9SJPBIrhxYYx3CKLkKmHezYV6oxwZu6ZqZQJkQIRVlT49z5ciUE8qQ226RXa00gRNEWDAi9oGvSsBgE9C4tl96gykBuI4lbLkaFqnX8kWL4HvbntGxeBQLKTjsQABZS5W6rF5IIEkqY4JZmT01oaLFRnAMOKxstON8HcDBWrjERVH0iGu2yBw4b4xyC2yWmVny8rxnuPlNYkWxZhML8roPbGrjP7jxSsWDPzi9AVdVi5WxgXZAwI9DyCg8o0S3RCkxLNu8Mn+VB0VYsikKrXFWeW3fjSTKmBy2CuitqbOHinYFQAYCEY4a7Ywv//7wVaqCrdyDXLQJ+dko3yNCQqjjF4A5M/PvmKxjp+dv6LLyq3YsJU+mDTJMyWISmiadqdJDJIjq7xkRrTpEhuNCPGTy1HhMgAi6b5s1IPgBQMIAB4Y3DD2ITEwTuSyFVFVpNJ4QjTnz9qVrQkK0wYZFEIn+MdtYpBg0RnEFtD0YCCMPNiE+8ONq13jwyVS3inR3g9N5jIBMsiE2ogvLgq8W68JNd3Ijq1JDBpWYNTEBzHHAVbIEs0N3qrv70q0PMlkLBMgQ+jd+uqyOJioGvCor4CaUzPUwEgAMOysK7u24EnbPvQ3tySy+JlMZQJkGOIkWPm1s9YAJK97bAEozFh205B3FxSoAIQ6hevjPkbz6GmV53vajHOYABnmiDtKdSFN0BbHiEHV2EmDrP7UyGABY4PJscwAmiXULfbjx1KS/VmnddYvGJIiXAaFrErhOiLPlDY6/uubEh0pMRnJBMh7IiQ4XqlVun9Ax++PaVWwIM0cTRIgARQQoO1nIAs+AgT4jOP4HgVNGG+kQjkT1D9ExiHhpkx27zm8vd+szDpp0iRGM2fOpDlz5lBYWBhNnTr1zTPPmuU4js8zZswgi8VCISEhjuMTJkygTZs2UUBAgO5eGK+Oi4iIoMDAQLLZbBQZGUljx46liRMnsvv7+vqy73EO7/4+Pj4ux3FdzAFzycvLY1V8OI7nWLduHU2ZMoXGjRvHPuN+GA8aP3482+K4n58fWa1Wxxznzp3ruMdAnlOdI+aP8c7XUM+dPHky+fv7s9/e+XdW7+Pl5eX4D3JychzPM6IA4lJPckxRvYyM+KEkdCH5eadED1oGHhnPzs5mfw4Yc+nSpbRs2TJatWoVJScn04IFC9hn9U9OSUmhxYsXU1xcHPscHx9PR48epaysLMf4wsJCSkxMpNBQ/QKYuP6GDRvYebguPqelpTHmxDm4Bo6vXLmSgSYhIYF7/4yMDDYmKCiIHY+JiWFz3rx5M5WUlLzpw7xkCeXn57M5ARjYB02bNo1yc3MZ4TuMS09Pp9WrV7NrY46ZmZmOewzkOdU5Ysy2bdsc13B+9jVr1rDnwv0KCgocv/uiRYvYffCiUP8D/D4jUoJoCU3WkPT31SVFxRkOYKCGAxFxBP5i7G83b/zpIPyRy5cvZ4S3FhgJDIQ/UGVQfMafnJqayt7+K1asoNLSUlq/fj0bjz914cKFjHnACOo9wJz403HdLVu2MIYEA2IfY9euXcvOBcPh+iC8ncFoovuD+ex2O2M+MBIkBZ4Bc8LbGeOxj3PA9Hhrq/ecPn06Y2DcF/PEOOwXFxezrTpH3ANSwN3ndJ4jCHNXr+H87Pi98UyYT1FREfuMsdjiPpAs6n+Ae40KgDh3S6nYqkiUFx3iasW3IUgoGN5Qo2B84z5wHAz3M4K58IYXfQ91CWPwZme/iawq4BhvLNQHMJlAjTAkgFlVxVRSpRP2oVa5cx13x/X3nLzvB9Q8YvZsBiDR9UYFQLRer82rJepuVeIoz88pLT3vNiv130ZggHsW4HomA+2LCxJ9c0Wix7KEKkxH04D3+1x4Q0NPNhoDOwI0lPOIjY3VARWSAhJiuH6LwXxOqH6wfdwE7OjzPMBewfok23IkaixRuhfeaVaqGZ+fV1S0hy1K93l4oACuxbESBc01vTYmeQBATDLJBIhJJpkAMcmk90v/D3AkNzm1YnBkAAAAAElFTkSuQmCCUEsHCJQ1p+JLHQAARh0AAFBLAwQUAAgACABWYCJDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAVmAiQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdXNtuG8cZvk6eYsAGQQ/Was4HR0ohJwhqwIkD2C2CJrlYkUtqI3LJ7C5lyYmBpkXT9iI3BYLetCgKNE1RFG2goECv0os+QF9ByJP0n5ldkktStEambMpNxT3NzuH//tM3M+udHx4P+ugoyYt0mO22SIRbKMnaw06a9XZb47K7pVs/fPXFnV4y7CX7eYy6w3wQl7stbkumnd3WvmlTo013q6s6ZovjLtsybF9s6TYlFJOuUWy/hdBxkd7Mhm/Fg6QYxe3kXvsgGcR3hu24dA0flOXo5vb2gwcPorqpaJj3tnu9/ei46LQQdDMrdlvVyU2orvHSA+aKU4zJ9jtv3vHVb6VZUcZZO2khO4Rx+uqLL+w8SLPO8AF6kHbKAxgwk7KFDpK0dwCDUhQGtW1LjUAio6RdpkdJAe/OXLpBl4NRyxWLM/v8BX+G+pPxtFAnPUo7Sb7bwhETinLFmVKKC8qJaqFhniZZWRUmVaPbdXU7R2nywNdrz1yTvIXK4bC/H9sq0ccfI4opRjfsgfgDhYOU/hH29zDzB+oP3B+EL8P969wX5b4M92U4a6GjtEj3+8luqxv3C5BhmnVzwG9yXZQn/cT1p7oxHT65AWMq0odQmGGQqRc63Mf4hv2T8MdxJeyZQZKZVst8HNho3SSAyi/eJn2ikbK6Ua71YptUnDNOuaJRP/ALDVTMyBaacv93fwstslXDnG/RXz9ZgxaCpzDEne3aVnYq80DFgS1bqU+ZDAprMMwgYazeEyTAOKQCNReIGDgoisAcEBGIC7gkGkl7VIgpeMARQxrZcoQhZx1Cww9XrjKJBFRm7yowSkSgIY4EQ8QZFUdgSsgZJhgpZVBCCCTgJds8obYKJhGXcMU04tBHa5OKQEEGL8I1NE8RI4jZl4lCVCJp6yPc2rrUtutQJUUSI0lshWDWYNLenKG8RsyORlbiSrPRuGyIqD3o1KflcDTBAkqDQ5r6Pe+gGm7xhZ1+vJ/0IVTcs0gidBT3rUW4hrrDrEQ1iNTf6+Xx6CBtF/eSsoS3CvRBfBTficvk+A0oXdRtu7LtYVa8nQ/L14b98SArEGoP+3jS52GfzJzTSa/hgs084LMPxMwDOXOulrY7hCdoXCTQ/jAv6uJxp3Pblpi6BpDk3ax/citP4sPRMG0OY2fbRZ2dZNzup500zn4CympbsXJBM0GIT4OQELLuyTDv3DspQIXR8U+TfAiyVSwyCryzYYJrxSi8d+IfUc0jaYQUEGUYIZQI6Fw7ttZHcMQN05jAO4T51k7OeaaqxpOjCUjxcTIdby+3xj1zcbu4NexPbzkRvBaPynHuUgjwj7kd117W6ydOTZxxQ3xuH+4Pj+9VDtvXdf9kBFfY92C/50SPbLyDx+53f/LUdmrVc1vd5Dkx1JVwx31/dKVAd32nqkGSeoBk0kxaOHeGW5XR1K7Kar6N8+MsLe/UF2XaPpwO0r7w1niwn0z0p1knWVedO9tzCrZzmORZ0q/0GWAcD8eFN88ZVe8k7XQAl/5BJZLYAvVj6IC/20l6eVJ3vO8SMy8w9xTPaurCbVfVG/lwcDs7ug9aMNeBne26lztFO09HVtvQPsSAw2SqT520iCGEdGbfswYIQ2/bUAHiKa1owDTH5cEwd6kXeBQ4WrvrJwPIs1DpFCsbD5I8bU8EnbscDjo1rvpNeSR8162Y0XD/A/B1k3DoX5riCI8nGkaFcBoGmZPTMHeM+6OD2CaApNK2+CTJGxJydb457FTtV+WKvs0c0SC1+QX0CA3i46pzKN4vwCGWkEADLNk0gfZ9rB0KxjY9h5e4sScn1nPYk256nEy8PUgrfQjaETdGNTWJElz1ISSkhcuRyso23cmP0k4nySYdjjPQI4cGOKtR1WkIFIlX8smrI5CA8wozOlBBtACWcyQTqe+1FlBpGs1yWGYdg4NoAgm+ICR4+QjJ4vjIsvFVtlFYLFikHRQkoiDPh55tebZhx2pdYSOC+rtzVjUrsPZwMIizDspcTvVamrf7SWsa5GNs5YZiYjXdi2Zc1g/avrKqigXpg4nNGEp7UfoNm2iGz07qBWUjY1U6R9/+5o9oal6rTAfPoARPQO49a81BcC1VYrVaiSH8JtkRdBfCPfBVXLHhE+zVBT2s7xyDQLfcrRNS3XpIZtAERcnTY7RXl9+rS+1BnrIlIE4zagnAHqtq3oM0Zctpxx7kKFtOP3yXPsz8KArv/23ulXbT9mpFeNtZTlMPvHK8u3cD5e8v6MKt1brQtMRbl7NEQj3K7rgJ1kh1RLWBPEoxbIzS1iadcRpKiWLSYK7gmbgKU72X9Oz95bZ6awGfeDU+RVVbDUC8Dmv9AhjLElu1Njr1qI0gF4jhFAmwJYXnZX7iAh5vIOSQ2KIqothwSYTUGBshLh+35u0rHYz6aTstJwj0rQLdzkrIthKXbiwmUYdJMrJ5693sfh5nhZ0f82VmkrNpiDse5dAxK/DaWpLjEnQVHuy2Xv5wPCxfuesP7tUm0LZsq/nihZFe6nGFWPC4j0u+65J0IvcL4u34YAH5V3fKnVzyj1u1+Ov0p4zz0jkx5MOmoFphZSiBH86IUw5QGmkkllRwybQGRWGzhvp4odOG0PcuLnS6nmDIVsbCa4GMjgimmkngoZRrqbzZAjDAJ4VmYJ/SUExlGDDsssCw9QCjrjsshEScAZkH34mZoWYpKkyHocIviwpfDyoEX397ITxSinFOwFoEU4RXyBjKDCccKwE2pEygvYjLIiPWhAy/9rhAKgh5BngxDKBIJStcNNWSKwz5B+NCKxqGi7wsLnJNuKjrbzHUpuNYECWIMNpgKaokncFNojXW3GjMtQqDRl0WGrUmIrwstb5ewIhIcAJpuwZf5qeN1wGMviww+qnMUFwPaHRkFAWHxsGjYV3ly5ATGAFZtMDaSAaPAtNl00AGkteLY2PWw0eXJsy4AcwTTSqkxZ34fvJOk7w1caiWLS8EA48gmFOOCWVaEeVjPQV3JgilSlIuIEcLNA+CGyioAKaI1wPCkuR4cyHQEQaF5wAAxRA/FPMz4RG2mx4UIRRSYYFD8y3SpOs2MQ3AIYCyr8JheTq8uVAAJyGCQo8MM9JwTXmFBSECkOCSGgKRngR6JdJk8YQHILEWHv/F0vR3g3HgkZEc2+hgMKaCkgoHSggGekgYEUQbzgNxaJJ2m3oGILEW4v7FOQnvBmOhIqB7QkoCFENguRyK0OkT0mTqlAQAsRauvnzmeHNhoDSC6KAha5XSTv1LVeHAsGQYE8mYBvrHAydMSJOX28wyAIk1cfPl+ewGY8EjrbiEkK0gd6WijtjCUKIZJRxrKmVokGgy8bPTv52dfnV2+p+z0y/hF52d/uPs9M9nX3/mfj9BcONf7uqfZ6ffnJ3+++z0c3f5uXvlKygCBZB78POz07+73y8DoA2g91cE2rnUwkpqJT6CRoRqwEAwo4TrhF+ooco6MQBIKKlN4EwJUXMAeTQ8Rr/3WKAACQew9GU0r94lRDF7FjKWNLKzHQQr8P9EYlZRaxMpQ+F/SjCI4IyLQCHrOSE3lDxEvAFc+5mKF58nXgmpP4aAK5jdQ+elK4AVQBAWlNsN0oqFRt0mP95FOdr1p+gH6LvOR76bv/89uPB3K3Gji8g7gD9fmbwD/fxjlVxBDzgnkjPNuNGqciTAzRilEHglETb5CfD0nQoAir6P8mWCnd/91Znf/eX2Sp3jd+enc6o9XRdYZmxS9t3Oglp0LqcWNIDRXye1sLzczikKQutJRRUZTWwuZiANAJ4YaJuUrIr/AQu/T7jc/qzjCou41FpwyHE5p6aakjKQXEHkhv8g86JO5kHCbTLwm6i9+7+fdQKEGkDDN1CoCgRlKBBqyqRdXZWVTDUoLAFfBkwaMxG6NaFJ4dq773XzuP0RpY8+Uo/++7t1OZAAtndtHIjkEN0p00AhMGUVf1AAB+ZUg8oLO+samDnR5uQGaPg8AjbmUIq2kbLB55JwBMyCXB84IK3S4HM0UYSZOtnCEefA8owUNpHVJJQv0Ca1fgl5+2g/+qjzqLKVCyP0aKHorDk9Qg3b231vlL4UgmkAjb/mmG4BB4TgLJjA3EC4xqE+b56k/9YR679MGfkvLC+EG6enjricWu5+A81Fc0toVnL4rz+FZ389+/pX8Bac/dJdfOJq+WZJA3524BvH+z9zpf7kitfzBbaDn6KXv0PwKyiAQ9E1rfEvn98B0ujVR/q01R2fPtOiwLQ01YoyojTQLez3h21REmnhpnLsErEkKnAVjDanC9rf/voPNA+Q/SZMD1yBUSohDNES2BMQWT+HuUWAUGnOqMZKSqa5Dg19zUkDSgPEvJYl+XOWfVd/bvOMsaCRJSqGSqmENpiLKgkxAAtljHJllx0Dp5Npc4KBB6x00TUtwK/aGLmJONhtkJCXQ1gSBpyP24h64pYiLdUxdlcXNpAnksD9qU1GL2XADtU1rcKv3gy5kQ4KfD6x8pZEgk0YqVQ972a3QxgjDECleWDWwJrUXusALNa1Er9i++O1QEJXG4R0BOSIGUkxlgTyuEAk5lbiCQ6AYl1L8St3PG4oGFgQbL+9FpjaHVt+t7bd96gZRBGNNfwGz8qwufV4FhC42ZqW41dtctxQLKibkRZEcAOIyGrPloik3YKqCfzZjcCBUDQnc6DuACjWtSC/clvjM55CIzJihnEuIEJzyJsIq9cCDNAEBZAwrbQ+N0o//uPHuBr79Iu6130lF/vi8fXHgLD6i3BBgjOju91ukZTu0zifOzK6SvRr+jaZECEUwMCJwazeZ01BKez2Xk6BwJmn9tny6/5TyGnuP4UuWQ1d88Pl5Ao5CLGzi5OlIWLZ7cx3y0HGs7mfK7NISQV+T0MMwkbbrRcLny3PK87kI+am6vheX+qL5lU6ohY0pBuiId1nxI2eGw3ZYhQcNdUUwqOiBtv9ZxumIjN0aaolvRAt6V0lb7MR4tx//+B50RLDI6DiUy3ZPEcyIXJTHTkI0ZGDq+eTyz67f35UhCjT9CQbqCNqiSc5DNGSw6dBdauc0x6eQz0B1dh0XzLhvlMtGYVoyejqKLhLVCe+5DlVEQ6M95m4ku3Zf5vMXtf/mu2r/wdQSwcIJ773lPEOAABqVwAAUEsBAhQAFAAIAAgAVmAiQ5Q1p+JLHQAARh0AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABWYCJDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACPHQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFZgIkMnvveU8Q4AAGpXAAAMAAAAAAAAAAAAAAAAAO0dAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAGC0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | ||
*ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | *ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | ||
1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.<br> | 1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.<br> | ||
2. ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಸಂಬಂಧವನ್ನು ನಿರೂಪಿಸಲು ಹೇಳು ವುದು | 2. ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಸಂಬಂಧವನ್ನು ನಿರೂಪಿಸಲು ಹೇಳು ವುದು | ||
*ಮೌಲ್ಯ ನಿರ್ಣಯ | *ಮೌಲ್ಯ ನಿರ್ಣಯ | ||
+ | ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಪರಿಧಿಗೂ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳು ವುದು | ||
+ | |||
+ | |||
+ | *ಪ್ರಶ್ನೆಗಳು | ||
+ | [http://www.regentsprep.org/regents/math/algebra/ao4/pracdirect.htm ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೇಗಳು] | ||
+ | ===ಚಟುವಟಿಕೆಗಳು #2=== | ||
+ | |||
+ | *ಅಂದಾಜು ಸಮಯ | ||
+ | 20 ನಿಮಿಷಗಳು | ||
+ | *ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು | ||
+ | ನೇರ ಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ dirvar.ggb | ||
+ | *ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ | ||
+ | *ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು | ||
+ | 1.ಲ್ಯಾಪ್ ಟಾಪ್<br>2.ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್ | ||
+ | *ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | ||
+ | *ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | ||
+ | ಒಂದು ಗ್ರಾಫ್ ಹಾಳೆಯ ಮೇಲೆ ಅಗಲದ ಅಳತೆಯನ್ನು ಸ್ಥಿರವಾಗಿಟ್ಟುಕೊಂಡು ಬೇರೆ ಬೇರೆ ಉದ್ದದ ಅಳತೆಯ ಆಯತಾಕಾರವನ್ನು ರಚಿಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನೀಡು ವುದು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಯತಾಕಾರದ ಒಳಗೆ ಇರುವ ಸಣ್ಣ ಚೌಕಗಳನ್ನು ಏಣಿಸಲು ಹೇಳುವುದು ಚೌಕಗಳ ಸಂಖ್ಯೆಗೂ ಮತ್ತು ಉದ್ದಕ್ಕೂ ಇರುವ ಸಂಬಂಧವನ್ನು ನಿರೂ ಪಿಸಲು ಹೇಳುವುದು . | ||
+ | *ಮೌಲ್ಯ ನಿರ್ಣಯ | ||
+ | ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಉದ್ದಕ್ಕೂ ಮತ್ತು ವಿಸ್ತೀರ್ಣಕ್ಕೂ ಇರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು .. | ||
*ಪ್ರಶ್ನೆಗಳು | *ಪ್ರಶ್ನೆಗಳು | ||
− | + | ||
+ | [http://www.regentsprep.org/regents/math/algebra/ao4/pracdirect.htm ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಪರಿಹಾರಗಳು.] | ||
==ಪರಿಕಲ್ಪನೆ #ವಿಲೋಮ ಮಾರ್ಪು == | ==ಪರಿಕಲ್ಪನೆ #ವಿಲೋಮ ಮಾರ್ಪು == | ||
೮೧ ನೇ ಸಾಲು: | ೧೧೦ ನೇ ಸಾಲು: | ||
*ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು | *ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು | ||
− | ಲ್ಯಾಪ್ ಟಾಪ್, ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್ | + | ಲ್ಯಾಪ್ ಟಾಪ್,<br> ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್ |
*ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | *ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | ||
+ | <ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIALSVHUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwGyD03wiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAPeUlEQVR42u1de1RVVRrfKhoZFj7DosJ8YWnR6Fo5M7ViLVNXy5QZnYmZMUOHKVB8tCIkpTQFkwmTEpXGFz4QRpSw8kWID5wwxPERvmZZmZqv0CTp3cx8s39bzp3L5dx7z0sj/f74LbjnnrPPuffu3/7e3xZCCHIKRM+Qk+MxGI0AzhHD/a+GgICm/CUzrm+CMBjXPEGiosJo6tTepjF48F00ZEgYf5EMliB6CAwMoDZtAvmLZDBB2DBnMEEMonv3YK+GOZOGwRKEwWAj3TuiozvT0KGd1HX8JfpGT3EjRYlgihPtaaroSDkijDaKrjQxayUdE72oUvSgd0UXWijuUu/HinY0SNxCoaIFf38sQa5NPCSCKEOE0lHRk6rEPYoUM8XtNEF0oGjRmiJFK+pdW0vtRAB1ETeo18NFG0oUt6rr8kUnOllHnhRJmnDBjhAmyM8cA8XNSgqcEffRDtFdkQGT39v5vaW15m/MCNGSUsVtimQgG/5nsjBBfnbSAoTYKrop9QhSwch1v/jxR1P3AdkgTaCWgYghojl//0yQxgus5EWiMx0W9yobw+z1vY4dsxZ7Ek0VUSCp8Bev+fdggjQaQEJgBR9TVEojgztTgGhiaRwQpFlwsOXnuD00jEZk5yqJEiPa8m/DBPnp0UfaBJiQWLnDMmbRHZmZlscCQVqEWfcCdlqxgm5NTFResp0iXJHWKlkZTBDbgPcJ5OgnWqnXTYOC1CS/sWfPq06Qm/r2pZ5Hj1KTgMv2DoixQnSiEtGVgljlYoJcbcB7BFvD0yvVOjqawnfutDRmt61bLRME97xl0KAGxxFHwXOGcQyFCXI1gNUYhvhGHytz15ISahcba4kgVqRPm+HD1T29vY94CmIofcVN/BsyQa4coLYgwp0p7vCp29/QpQv1OnnStMENgrSKjDR1TdPAQENqHVzPIAlLEibIFQMi3yCIkXNvS02lO7OzrzhBOk6davg+kCR7RQ+2SZggzgOTC9Fro5NLW9lhPJvxQpkhSIvQULrvzBkKaNfO8DVZUvrBeOfflAniGKC7H7OgnsBo7lFZ6fIs+UNYTg7dPHCgabeuWTUREf4E0Z5/WyaIfSB9A7p7ZJ0r1yw6FxVR+7g4wwRpGxNjya1r5TPBLuHfmAliC8iiRZKh1evhtoUa1DwkxFGCeHPrGgViN7BH+DdmgtiKkiNj1m40umNKilKH/KaKzJxpiCD+3LpGgSAibCv+rZkglhBTVEKPxY6zpMa4A9ffe/gwBT30kF+PlL/4iVG3rpFneiDxBUrOXsXpKEwQa7Uc74YPUjbEPVVVttQZoFW/fmocd7LtWr788mRt0sRFEMDb+2bdur6cB7BfINWWh/6aExuZIOYDgtDPNcMcrld4oxCnaBkRYT2ZMD+fQpKTL9+jWTP6w4ABlD9jBu2Tx6s3b6Z5J05Q5scf00dr11LJvHk0Y8wY6tOjhy23rjsgdaCawX7R3M8RDqmRTJDrLOahFxCE7o+VF8a0lZwpTPD7P/uM/ipJUbNtG/2rsJDWv/EGvTlpEr2emEh5kiCjiovV68KMDKpYtowulJbS8XXrKFnaJl1WrjTt1lVklISC1IFqhs/g+T5SZ1iKMEEMAxMGTRK82QCYpFjJYVSbSScZ+8QTlHv8OI2WmDVhAr38zDP18M4nn1DMxo0Nji+QRv6msjKK+vZb+pMJVQ/qnPasUM3w7N48Wsgt49+eCWIoGbFa3O+3Kg/EQO0Hcq46yMnuy5APatmSSuUK/sk779DxTZtoWG0tjZGSw5MIb0v1avjevQ2OA09++SWtqaig0/L6VZKYUNG82SmedgYkl7+KRCOfmcEEUaWyq8Xdhs9HYiJsC0zG1sOG1XsPkxfk2JeXR+8vXkzT4+IoLT6eKg8epIE1NTQlIaEeCQrlGH8+cKABOVLXr6d4SRBcizE+XLWKiufOdZHEn51hV2oymCAuIE/JSmwAkxFGfPcdO1zuXEzgHYsWKbhP+NXp6TT9888p1kOdWieJ8/ShQ/WOTR83jh7/7jtaIUnofhwkyU1LM2xn+AOaS2SLO5kATBDf3is0PggWzSyPERwVpaTJ3atX0/iJE+nwmjW6KtN+qSo9+v33NFEa5Nqx0t27aexHH9U/d/9+mnb6dIPr00aPplNyjKH9+xuyM/wBTemQfsIEYIL4TL8occBYhT3SWZLjMUmAFyVZpjz/fMMJLtWlAmmUDz9x4v8SpLycnpQT3XXOtGk04Icf6M2MDN3rYZPAcId3y5+dYQRwbaOenUnABNEFMlxRSuvEWItfeokqCgsp8/hxNcmnVVY2sDlWvfoqjfjqK0pcsuSykS7Vs6fOn3e9//ypU5TloXIBULdgk8Bw37BtG00aNcqRZ0a3R9TZMwmYIF7rzJ1IA4dhfmn7dkqX9gMmdO6CBfTSuXNqtX9FGtDuk/09ed7gb75R5Mlbt45iLlxQx2fl5NBvpO2R8dxzrnMhSaBuwSZ5RapXODYnKYmqS0sd+fyoX7eTmMkEucaBFXSYAyto3NChtCc3t8HKnyvtkviaGoqWUuO1vDyXqpQmyZO0dy8VSckw6osv1PGnLl2iJXLi43+QZI404CGJpldVKcPdfdyP336bHn3wQZ9u36stQZkg1yBgf9itkcAERXQcKSR6xjkIsVRKkT9+/TUlVFfT7OxsWpaZqSb//LVr6bdSmszesoXiJJFwPkgCSZIkJceM6dN1x9yYlUVZ0uax+/mxOGCRYBIwQXSBklonmhogNUQvUu6OmePHU/YHHyhDftLJk5QtJcRIaVMMkmQYLLGkrEyRBJJk9tKlPsdaJO2dcmnH2H3uSIecFEyQaxQXRYQjSXv/3rXL54R2x2ty5U8/ckQR5VD/kVQZFU+/l1IEJHlDGuBGxkAe12cbNth+biwOXETFBPGKCUVbVKDNLgbXSQEz2D/4aaJmvem/EtufTDR9PQx3u88dcexTSsnKYxIwQfRRKx5wZBzavduwBAFmFxTQknnL6D8t+tCPQX1p6qZt9JcLF2haerphCXK2uNgRCQI1k0nABNGFUy06z0vD+hWPmIceUqUhn3DuHD0hVao3Dx9WJJlSvF2pWwvqvFbwbk3xM9b85GQ6smaN7eeGgwIdT5gETBBdYHI40Z7zn7m5ynD2NqEx4Sfv26cIACLMleeCJJAkUJfSJVlguK/IzFQuYMRJtGCiHpDdC8+ZE4ma7MVigviMg1jZ+MbTzQtyrNdJZwdS5EoPeyHt7FnKkQTAsb8dOEBjJRHwPwgyKylJSRG4gOEWLikro5G1tSotxT13SwMyhV8YOdJ+/Ea0V90jmQRMEF1gcsQ5EEl//OGH6aCUBu6TeLJUp0ZUV1OsnOhFblm8OXUxkNS0NBdB8De7okLFSdzTUgqkIY0Ex9gNG+qpXafkeBHdutkOFCKSjk1DmQRMEH0vluigJondcQJbtFAltUg1SXn2WRpdVaUmfoFUp7KkdKhnh0hJkrJ/v+u1RhDESRBM1CLuWpDxQ2mMI1V+QE2NKrqaO3EinVy/3pHPjw13uA0QE8QrUDBktDm1P2S/+CJllJfTQDnh55w+TW/Nm9dANYIkgbrlLg00ggCIuCMtxfM61JNUHjqkKhPjP/2UEiQRnXhmbDyKXmBMAiaIz9JTu93PUTAVIe2KCRcvUvnmzWrl95zkkCRQt1I86kXcCYLrkLvlmeCovYfy3RWSIGgEgW4pdvp3YZ9FfHYmABPEJ1Bua9VQR00GasBRMIUm1C/HxVGFlzQRqFvuqe16BNESHJEFrOfqRTFWbFTU5fvm56u+W/6a0/nq5MIeLCaIoYlidnsAVPGhvSgaOLiv5Ci53bNyJb3lUfAEdQtEmKyT0OhJEACp8qgncT+2ef78Bq5dNKdDB0eQ1EgvYM9SY64FYYL4L5kVzVTZrdGcLPfuIXqTMqRtWzokV/rCOpJANYJNAsNdT7LoESR34ULl6dIqE9+bO1clJ6LuRK+aEWRFCS66yhtRu/BZnVAtmSDXUdp7Pz/bHQSGh1NXaWSj46Kv7iFwu4IkCB4iXlFeWqoMd3i3jBIEQGUiynfRIQUdTTRyeHProrEd2qb6ez6OoDNBLAXMvOnj6IeFhnFYoc1s1AnXb+ro0cpwz3j/fVe1oRGC4NyyggIVPIwdP97UZ4GEQyIiOp54a3KHz8qVhEwQU94s9KuN8HB5YmsC2BloGGd2g04Ahju8W68nJdHFrVuVNIAdgc6JWu6WRhDUk+SlpVGZVK9wLhIS0QgC3VLM3hc2EvZMxLN7khrbWKObCTeNY4KYNta14qGWffqoRmxoyAbVymqnE9gqmpcJEiXqkUeUuxfluSABsoBBENSToIH136WkgpdKU6c8xzALNLnTmspp2yew9GCCWMb2kIfplwuXKhXFs2uiWcC7pbeJjqcNgXv567uF5nR2nqV1dPTlGpDMOXQk+FcsPZgg1vBg5R5KS3ndcjM2DfBuQb0x0rvKnSDeDHB0cLRL2KZBQRSfsYD6F23g35oJYs+jZTc/CZIDrlcj5/qTIICdDTw19OF9QZggTgBGLOIiVjsOapPZqBQyQhBFuvx81VXeUiqMVKlQHGY3tZ8JwnAlMWJCIV/J7LWIQ5jZvs0oQWBwQ22z4k1DOg33v2KCOIpkEaKCaWZUErhUEUw0cx+jBAHgbkZMxsz4KaKj2iyHVSsmiONAvhJqJoyci5UdwUSzbmEzBNHuYXQ7OGQHwO6wIgkZTBBDAcSdItxQ3MDK6m6WIAC2PsCeif7OCxeBKiAYwfUeTJAriRDRXJEEksSbmgKpYdU+MEsQGP9wAvjafRcdE0EONsqZIFdNkkDdgk2ip64gWo20FCtjmyUIgB2lEBvRew+714IcXCnIBPlJDHd4t9xdwAjgIZXD6phWCOLNWwZPFRrBhTrQ64vBBLHsAkacBMFEqDuY4MjdutoEaRUZqSoKETyEGghXLrxVXOPBBGkUwURE3JGWgtwtO2NZJYhKQSlaSzGxzymVCt1Z2JXLBGl0uVtIcARZrHqLrBIEEuwf4UPod0XFSoLw78EEadSp8og3IJUcsQczK7kZgkB9wr0qRQ9bpGQwQX4STxcqEzFxYaPA6wU3qz+bwB9B4DXDnubo34U6cozrrzyYwQRp9I0gsNLDcMakxuSGjQACgTRomK11lQdBIHHwGrXi2BYtoa5nLhq7gWyIwQwUN3MdBxPk2pQs8HwhGo9JDzUM8RS4i7E/CTbxAYngnoX0wfva7rt2909kMEEYDCYIg8EEYTCYIAwGE4TBYIIwGNcD/gdfndI3KDFGDQAAAABJRU5ErkJgglBLBwhKPgabtw8AALIPAABQSwMEFAAIAAgAtJUdQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIALSVHUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Z3ZcuPIlYav20+B0MVcTJio3JceVTtq37S0u3omJubGAZKQhBK3JqkqqcM3jrbD7gfw9bzCuPe9I+YBxu8wTzIngQRFAiCElNQsJD1hd1EEQCx5/i/PyZMLdn9zPhwEr+PpLBmP7u7gEO0E8ag37iej47s7Z/Ojjtr5zXu/2j2Ox8dxdxoFR+PpMJrf3WHmyKR/dyfmEWVdzjq0d8Q6TB6pTtTroU4/Vt2YSMUYkjtBcD5L3h2ND6JhPJtEvfhl7yQeRnvjXjRPL3wyn0/evXPnzZs3YX6pcDw9vnN83A3PZ/2dAG5zNLu7Y/94F0638qM3ND2cIITv/Pv+Xnb6TjKazaNRL94JzCOcJe/96p3dN8moP34TvEn68xN4YCrETnASJ8cn8FCSwEPdMUdNoEQmcW+evI5n8Nulr+lDz4eTnfSwaGT2v5P9FQwWz7MT9JPXST+e3t1BIWaCYaIUo5QqgqnaCcbTJB7N7cHYXvROfrrd10n8Jjuv+Su9JNsJ5uPxoBuZUwa//31AEEHBr80Hzj4IfAiR7ULZNkSzD5J9sOyDZ8ew7OcsO5Rlx7DsGEZ3gtfJLOkO4rs7R9FgBmWYjI6mYL/F99n8YhCn92M3XD4+/jU80yz5GA6mCMo0K3TYjtCvzX8C/mPIFvbSQ+Klq86nZ44XzS8JRmXNr0lu9KQ0vyipek7C1zynqLlo9uCNHpQvXRMulf4//a90RVr3mMUrZt9vdkFjgg084u6dnJVdi0cwOzHHWvnM4+HMAEN1wLXRPQ44wCEkyJwHWMOHJAHgEGAeMA5fsQqE+ZQBlbCDBTRQgTkO0yClgyv4h8n0ZCLgcDKzVQKUAYYLsYDTAKdQsQBQClIwAVJC4QjOAw4/MpfHxJyCioAJ+EZVwOAeDZMSw4EUfgjf4fIkoDig5sdYBkQEwpwPM8O6UObW4ZQkECgQ2JwQsAakM5zheBVQ8zTCFlcympzNV4qoN+znf87Hk4Ut4GiokC7rvayCWqkW39kdRN14AK7ipbFkELyOBoaI9EJH49E8yI1Ism3H02hykvRmL+P5HH41C15Fr6O9aB6fP4ajZ/m102N749Hs/el4/mA8OBuOZkHQGw/Q4p7HA7z0N1ncNXyhSzvY8g6+tEMs/S0rrzuGPcHZLIbrj6ez/PCo339mjrisGqAkD0eDi/vTODqdjJPVx9i9k3qd3fisN0j6STT6NxCruYopl2DJCbFLJ8S5yO9kPO2/vJiBhIPz/4inY7MPhQRhwbTmkgsGnuQi20ORDiUjkggmleKKgcFnvWiQ1kwhw5QzJRWnDGkFuy4q92GEs0vHrxcmis7jy6c9nhq0l748m90fDy43pQXwIJrMz6ZpAAG149Q81b3R8SBORZKiDd65d9odn7+01XV2rg8vJvANZXfQPU4LPjDeDnan/3YXe81N1e03p1vsx5qkR6Sf3ewzPQqUm92UfUicPyBeXCaZpZUZ2rHI5BWV0b3x8mejZL6Xf5knvdPLhzQ/ODgbduOFelbPiW/rnLt3CvLaPY2no3hg1QxmPBufzTI4l4Tej3vJEL5mO2yRRMZQ/wo3kG3tx8fTOL/xQRqWZQWW7kXLOi1tTk/1eDoePhu9/hBUULiB3Tv5Xe7OetNkYtQWdMEDnMaXeuonswgcSH/5dwY/ePSecRRQPHNTNADm2fxkPE0DL6hP4NNQN4iHEGUF81RYo7NhPE16i4IepREc3NSZvW9MQnvrppiDcfcV1HQLZ5j96NKOsHuhMMJ5qrD00ygMgdKiweQkSsM/q7boIp6ulFB6zv1xP7++vfjAxI3BMBmlQd8wOk8r0CDqzqAqnEPoDCYZXYbO2f3lVQlCJjA3P5Hmjwu4KWH+OErO40U9DyWVfAzKiFae6BKHOVTSpxCKztLoaG65TP94mvT78Whxs9EINJRaAqqpSXo4OIg4k/fihxN49rQ+WLK+Nc6VZvqgZCbcOjPxG5iJWzNxvUEz4RubKa3pF+V9b6dkj9Vard4gHKf2MB8Lc6CG5kCNnxBXPaGtvmbGFjzEhIBjFVhITKUUPLUMDgmhmiKMmIYmnHFXH2dN5aypaErCeLLsfvTy1stKkRSLszceDqNRPxilAfGDZNobxDuXEVqETKkGETYEZAV3Ns939LKT2VOUbAM15BJAvbJtVlhZKooq26Abm6ZSsKYU6xQLwVA8eg13C8FXEJwjm5u4QNkNBB/nW86hhDrppgtsN32Ml8wDqpgm58G9/Ph7+VH3IGrsaBoSLqGNSjnEXWBy2E7tJe5B9Nip0sQ9iCQ7ZVVk9/3RKHvWWea0TbicHCW9evO/n9K0av1eyez3682+iuT9rUASC1P+jCgNFiACSWaRhBKXEsP/FKH8l2HyZXxstldDeb9knajeOjN7trz4o+ZYAs/9JCtI09qwR4+C//30PwNWNqGx2ZKXSz+va8NLSwBjGEnFsDCpLESwMjkiYwsUaq0Z0ME1M7DI1BYdCKc0NCjM8RQzalJKN6gOClglw8kg6SXzhRUGRkTPRnOIjOM0NCwHvKdxPDFtjMPRh9NoNDOZzOyYpUB6jRQ+GM8hqiwo4X6mBI3++b//C/4kRhslZP8pmoxn/+IErv3J28Z32S8izMGQUEsqChWlzuxOTA3IkMluwkaBfwEE03ZjdbHfy4p8qYBXCv5//lZf5mnrZFGYcHQxygy5RFILSoTUTGkhmsecjrwuwlLEMmDN58JqvNZqh0dHs3hujMSyYKXDSKVRS01eB/iiae/SkBC65u3BwfjNB/HRID5PzXQzlqwZGxN1ba5aRxeEGArCCgguGBFacYKtizPEKcU0QYIiLcim+Fo2xSpl61j7zIm1z7xnrcOZhU14DNv1kLsheK3Dj4eEgvi0ifI11SZHaCyrQyk5h3iGMyaUVr9EgFlD31UMriPxcycSP/efRCFTe1HlPYiNcXzgAt+DFqHWrDFHpHobrFUQ96DM1xdOfH3hPV8ka+Pxtvu56rZ6IZQpWrPr1mLvetZir2qYX6SZ7pV2vKRZZNnhImQKK9ghJcSb0Obzt8Feq4d6VfTdVNH3TBWlPI7I09wN8zjc4zxOfUqvQYAVu4kj9kwcDasMbto/5SqDa+2vNJql4B+6xF4P33rsdXspeM2oSJN93GoCh4RhJjRWSBPFyC+Sn6jl9WHJOkdudB7dDp1ig1U3wpJTjSTXimNMoeCX6m6twGmbzixlPTqmIZWUCoIg4iZYI4/5rGxAPcyUIOqaSw/dMxYPW5elAANDewmaTcAgMkHbwu6Sm2aElhxrnGYvNtJ0erjSUHq4Lh3xpVNz6ctycwmBL4JnA61rATXPLTWXKoi9neYSz3K3HUIrzdqe9lI1TcuBcROmrk1W6/iCqpVqQggTUhKoR5kgC8DAzRGptMnDq02lJh5WpCNKhb7K2ldOrH11JWu65ax1VMaaYB6zdj3ibshd++gzXWASQTSDEFcSsTwxaLq+oPFJlOaKoI05t7UZwTVWWAXxaycQv/be6XXMFCpDIsXek9iYx0cu9D1qE2vg6QRWTGAkuAQ/R2w9qkKKMWyUgpskj8kKbZ62CuYelQn7xomwb/wnTNqh3F6O7XjUBCd3l/aodW7MNNKowlSDy5JEYJspAbKIphzAUpqCF+ObIuvRKkfr/NW3TjR96z9N2HZqSS9pau6irhssPmppmNgwE7mxOPFRlbeqjw2/c2LtO+9ZY9rOQWo5atWJ5kIrvGjN43pjFtPNx56lm3XIKUdUQIOMMCWkjRN5yBRTiEpCiVIUxJglmxkJMWXc5JspY+DpbmDcVnYTVjYLi5o4cdPEiX+awJJpKTUjAmKarOXHYSvHytTNCBNGqO0dhO1IQuhjGhsSE8q2WhL1wkjchJF4JoxS3xRy65oieNu08WidEl65KeGVb0qo9htFt6FTHRSdBhJbJ4P6auHUTQynHoph2WHIPIZYdRjZ3KFt8hdVw0mikvUfuzTLHt+O7fPFWG6nuXYZ6sss1O/g6r5PT+ZpM3ezlkcJPXEx65O33sLezlFCj7Mq90nJOgO3KndwO9iptxaJ/cOPEnqSKYHxRbLscRlZ9zTZk/YlyEiolJIEUUCRauttNegBYiuhMCJaSbap9LMt9sdZkT9ZlxL73ikl9n0xJYZCs3SVVlhQqiVjit5OSqyC11saI5T3t7U8JVaN0nI02wSoa2PVOrgg6kCcYcUZkkQtRs2ns+C1GRpNCGPQmNkUXcuWWGVsHWk/OJH2w5WkkZaThvOMpZcjhJ6Us0rNgbshdq2Dr0NCIaRAGiklGBacZ/ipUCstILTEGAvT7bpZ+q5icB2JPzqR+OOVJLKWk2iGBmUoejmCocqmVwP51AW/p22CrdlwPLypfta1xW+Re1oG7CcnwH7yPqjMRwh1sJeAPW2Ck7tPe9pKP8aIQhwBQxgYUtSOYg65EIIKgRDDBGO9IbaerpK0zmH97MTTz/7zlIf33Eucmvuo64aLT1saKEIrjSFmZkSZxZSUkpfLuQjEucaEcsmR2BReVe6qNjb8+x9cUIOjvUfNxoZ+Dsd76hoU3qyVVvXz9sCXLhVAOWGUQKioCVIL58bA0xEBMaMibGOLKVUYp4rBdSR+4kTiJ96TiDMQRbW1fQKxMY7PXOB71ibUmvW3baqJtrb0LW/PynT90YmuP3pPF8sqQ+znUNi8N3VNXTmsN2axT3XoW5+qDKVG0EKTiFPOGc1mB8NWwaUgEglCuNSZX6MoZIibFQWllATzrRvStKqFNYqYuCli4psiKjrTLyo632FnNrZJmE52qJOlCYUk3bq1tapEsUYaH7lJ4yPfpFGsFuxisRV1iBkBqUMKglCEUiQRk2pLhVFO0k7dZDD1TAaVNcFFdc1hYrTCKBy8tUJYUyvM3OQw80wO1RFEqa6wk2n+UWKI+lzY3E0Sc88kUR1CVE6ksIvtrYQQHo+Obq6JNcqIfofdtGF+4Jc6ijWDyJscK9UItpPvtieKaDbE+rlL4ub5W0/c3N4Qa6kQM8PcMc/fE0GUoMJ0alCMzUpwmx5h/bxknK4rnd3bojN/c+dmhlkLwigXjFOhzPoOl4vymVqdEIXAdUsI6hbjrDEAyzWEggphrjyuwCtTsM8zPVBRk3B97t7n8bx9/Rw0BNdMEWEcU4TtOEOomqnWkgOjCEP0tqk+xucrmdbn63oz/uSUb/1TOd8qiAIfA48tMcSp6paWHqgi9pYGWrO8vdXyjGs1TMtZ9CZIXRus1uGlQmbCHmAJK4W4XaAK4xAiGyGFNt6PUrkxvir6M0plvsraX51Y++uVrPG2s0a0z28fe17ut2pO3A25ax19OBSCMcYFElLTdMnTjD4hhBm1phQVAutNrYRaYZsqBteR+GcnEv/sv9cz7i4baq29R7ExkC9c8HvRItg6NFQY2nQMWgoIUaqJtLGkoMAaIRSl7wREm5q0t7b8LXQvyoj9xQmxv1yJmGw9Yix//Z+XQ9ZeNAHK3au9aJ0ny96sqQTHGnFENRf5mzUFZhpcnOaSab4pT/ZiFaR1HutTJ5w+9T927Ag7THCxBpBfODX3UtcNGF+0NFQE7yWhMaZMmktJCo02lq/vQjTBmCMswbsxsqnZDC+qPFb9VLy/XZWrLL4p2qYq/fZgAvsxGK2OuOtxd0P6WscgDqWiEB8SgTkzK24tXmBLuFBYSGJWXpJswwheBeI6HD9zxPGzBji2v83Gs6EhzMuJ6lV2vRrKPRcE91oEnAq5MkOsBRGCUmUnihne0gXNqGnMpUuvbB63Cuj2yoh97ojY51uBmE2L+JkV2WsClLtn22ufN2MhAjVprTljFGkm8oASa4w0QQQpjJXeVDpkbxWmdV7rC0ekvtiGIJIyj53WXnNHdd24ca+tEWOjcSRyUwHjXpXXqg8Sv3TE7csGuLU+TWJjxNY32arHCtXklYvm7bmOHur5N3oIo5AxgrlmijJClF2hkYYMlIgJQuZ1g2atIzv0U4aSSBAqg381Yls3HLiyl68ojL6rMPp+CkMhyQTogkqEhJ00QEMzzZETyrmpnDlZjPsUCNobikrK2Natof68XhCxqyBi/wQhQjA4YlApECRBGDR/p5QShJppr1BjSIbsGHFCQg5bKOzi3Awb3jZF7NUr4shVEUf+KaIjQoY5IgSDfcHKaPECP005eAhKjafAWQaC0VBBLYIRx1KYFP3WCWKdFI5dpXDsoRTWxBGdNYFEMY7YulmoNemwoj5OXPVx4qk+KsKJUjRB87moS9EE0mq79bFOGYmrMhIPlVGMK4hdT7UqrChGFWLrwooX9Yp45aqIVx4qojihhTvNZtFb1/h4sU4Np65qOPVPDdUxZmWI2SnFmB6nJ5rNPtyvt/9qHnj/red+t3n24X7JOANXPAe3hmfFq5X+f/bhhmYf7tu+HFTTl7Pv3ouz377+GxYKsCFAp0zsJuzrrEUooU2HCRWUMwKNv031ke6vdN3sr+u0+cqx0+arqk4b02TRSoJLAonrW+sjrXkl2q28/3jdS9Ha02tTjdRKJ2kDsK6NV/sgAxsLJc36gpxSnC+vaFYdxERSDRUo4uD0NsVYRSdpqcxXefvakbevG/Cm2s4btblQ6uXblfbL2Ynm1N2QvdYRyCHCQZwAeuYNselSpov3LUlOwNNhaHKwDRN4FYfraPzGkcZvtsH7dbidi8i8HHVXZdiroTxwQfCgRcBBmwIaCIgwwbBS0KSTdsU64/VgC1VEAm9yc4HlFWNbD8qYfeuI2bfbgJnfL1c6aMKUu3M7aJ1D6zDgi1ElsGaYKZYvtx6atIlEEGdygTnSm1rX4mAVpnWe6ztHpL7bhjjSTO3NAkkvG24Hzb3VdYPHg5aGjaVJv/nLy1Ym/Qq6qZXxD6ocV32s+L0jcd9vgxPr2NnZi0FsPgJ3PexuCF/7EGQhRImaI86UTHuGbCsgpBSZJh2ngps1jjeL4FUgrsPxB0ccf9gKB8hzB+jlGhdVhr2aykMXBg/bRBwKqRn9RTQFt8fMSDCeDwqklDJMJeIam3fDvw3mKsg7LHP2oyNnP24FZzbQ9DNhedgEKnf3dtg6l8ZDM1VIUyIIUsS8RPDyvYJcaSIRIZKxjaVGDldhWue6fnJE6qdtiCStbbiXLbfD5s7qusHjYUvDRozCbHVPJblZ4BMtXJhZDBQCSfMCT7PQxaYYq3Jb9aHiz468/bwNvHXsm814tZ39AO562N0QvvYhyEKhEEWYEckl14LkLTdiXkkDkSUVkim1qZZbhXGqQFyD49//4IZjevxVOOq245jPGPRzyEmVXa+G8n0XBN9vE3BNRlXyjbXa1pa+pe79MmOfODL2yTa4PDsYQbS9w6165GxhMFHRpEPX8bND/8bP8pCbl8cSwhXXGv7Mm3NMM43MoC+mqaJ2+j1QqiiWOBvezs0o5+tbuJVzHSpHtxSFMXIVxsg/YWgQhjS9tBipLEWdLT/EGFfMJLQFVti+6LXDSEi0SN/VJQmlGns88aGBLurVMXFVx8Q/dRQH19vXHhQH46dd+/aVbYwY567AqUFd4/Fruar1cbBODR+5quEj/9RQ4S0uyq4lf3sf1CFUC61Mx5iZd7t1UqivHqaugpj6J4iim8hS+wWXopR9xSds14JCgE8xFQhksaWKqNfFzFUXM/90UZytxbSQ1ZO1Kudqie2LK2q6B4sCmbsKZO6hQIpOA3Nbdax6GPuqgkJzZOvUcbhOC9HviJsWzA9800LRX+RhxapvyVKwhRbI9gWYh/WVQ9dVEF0PBbGm1VHyKhLZ9TqKzY7tqyCarSPpqI2eh9ooeIjF+zdW3Il9/8bWN0Fq0tdFcfRdxdH3UByrPoOgxashSg4G1FFojxDqrzqqFvGIShL4bb0AVjuNfnuF8ev7jJBrl9FS73rWuU6quxpucYEPbnqiNJfQ2pCYSmlfbIDNfEtNEUZQ0YA6rjXfkhXtBaU+mkGZpbY334/j8XHcnUbv/R9QSwcIMQCDIlQXAACS+AAAUEsBAhQAFAAIAAgAtJUdQ0o+Bpu3DwAAsg8AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAC0lR1DRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAD7DwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALSVHUMxAIMiVBcAAJL4AAAMAAAAAAAAAAAAAAAAAFkQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA5ycAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | ||
*ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | *ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | ||
೯೨ ನೇ ಸಾಲು: | ೧೨೨ ನೇ ಸಾಲು: | ||
*ಪ್ರಶ್ನೆಗಳು | *ಪ್ರಶ್ನೆಗಳು | ||
+ | [http://hotmath.com/help/gt/genericalg1/section_9_8.html ವಿಲೋಮ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆ ಗಳು.] | ||
===ಚಟುವಟಿಕೆಗಳು #=== | ===ಚಟುವಟಿಕೆಗಳು #=== | ||
೧೦೮ ನೇ ಸಾಲು: | ೧೩೯ ನೇ ಸಾಲು: | ||
=ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | =ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | ||
+ | [http://www.indiabix.com/aptitude/time-and-work/ ಕೆಲಸ ಮತ್ತು ಕಾಲ ಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಸಮಸ್ಯೆಗಳು] | ||
=ಯೋಜನೆಗಳು = | =ಯೋಜನೆಗಳು = |
೧೦:೨೦, ೬ ನವೆಂಬರ್ ೨೦೧೭ ದ ಇತ್ತೀಚಿನ ಆವೃತ್ತಿ
ಗಣಿತದ ತತ್ವಶಾಸ್ತ್ರ |
ಸಂಪನ್ಮೂಲಗಳ ತಯಾರಿಕೆಗೆ ಬೇಕಾಗುವ ತಾಳೆಪಟ್ಟಿಗೆ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ
ಪಠ್ಯಪುಸ್ತಕ
2.1ಕರ್ನಾಟಕ ಸರಕಾರ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 9 ನೇ ತರಗತಿ
2.2ಎನ್.ಸಿ.ಇ.ಆರ್.ಟಿ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 8 ನೇ ತರಗತಿ
ಪಠ್ಯಪುಸ್ತಕದ ಲಿಂಕ್ ಗಳನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಲು, ದಯವಿಟ್ಟು ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ: (ಉಪ-ಪುಟವನ್ನು ಸೃಷ್ಟಿಸಲು ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ)
ಮತ್ತಷ್ಟು ಮಾಹಿತಿ
ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು
1.ಇದರಲ್ಲಿ ನೇರ ಮಾರ್ಪಿನ ಬಗ್ಗೆ ಉದಾಹರಣೆ ಸಹಿತ ವಿವರಿಸಿದ್ದಾರೆ.
2.ಇದರಲ್ಲಿ ಸಮಾನುಪಾತ ಮತ್ತು ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧವನ್ನು ಕೊಡಲಾಗಿದೆ.
3.ನೇರ ಅನುಪಾತಕ್ಕೆ ಮತ್ತು ವಿಲೋಮ ಅನುಪಾತಕ್ಕೆ ಅನೇಕ ಉದಾಹರಣೆ ಗಳನ್ನು ನೀಡಿದ್ದಾರೆ.
ಮಾರ್ಪಿನ ವಿಧಗಳು ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು; ನೀಡುತ್ತದೆ.
ಸಂಬಂಧ ಪುಸ್ತಕಗಳು
ಬೋಧನೆಯ ರೂಪರೇಶಗಳು
ಪರಿಕಲ್ಪನೆ #ನೇರ ಮಾರ್ಪು -1
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
ನೇರ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯು ವುದು .ಅನು ಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು .
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಈ ಚಟು ವಟಿಕೆ ಮಾಡು ವ ಮೊದಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ವೃತ್ತದ ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸದ ಪರಿಕಲ್ಪನೆಯನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಮೂಡಿಸುವುದು.
ಚಟುವಟಿಕೆಗಳು #೧
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ನೇರಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ cirdia.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
- ಲ್ಯಾಪ್ ಟಾಪ್,
2.ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
<ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAFZgIkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFGHbniiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAdDUlEQVR42u1dWVQUWZoOd8tdEFkTMpNVdlRURBEU2QSl3FEULRTFhR1EUFBcwRU33AEXrLKqrK27tZeqrp7p7jkzU2emZk4/zZnp0w9zzrzM25wzZ15m/onvhpFmRtwbJApYkPHwn4iMvBFxI/P/4t//K0mSRCaZZJKQzB/BJAH5+pJktZKUkkLSsmUkxcSQlJxMUloaSePGKWP8/ZUxy5eTNH26ck58PEmxsa7XUsfZbCTNnu16j6QkkhITSUpNVY75+ZG0cCFJERFvzsMcnMeHhpI0dSpJISHKfceOVT6DcD7OWbr0pw0Q+uGH9/LHTpksUWKERB9mSFS5VaKOwxI9apPo03aJvr4s0ecdEj05LVG7fPzwFonWrZBoQbRy3oCf8fu/Z8T7HOLrT//z6z+MXIAUF5N0+jRJeXkklZSQtGMHSaWlJEVGkpSfr4zZvp2kLVtIKiwk6eBBZezvfkfS3r2uQFDH7dtHUnk5SXFxyvHMTOU80L17yrGjRxXCsbIy5bycHNfxOL5rF0nV1QpocV/MF8fw/caNJK1f/9MEiAoMZ4Bgf6385sH2P7/9dlDvN3miREU5EvXJTP+rGxL99o5EX1yU6Kn8+W6zRJerJTpRpqertRLdPy7RszMSfXVJOe97mfrkz0XZynXdBYnz/j/ef8r2HzWddPluxFFtLUkdHSRt20bS4cPKfmsrSceOKUyIMfX1CohAYOo9e0h6/FgZ6+X15lrquJ07SbpyRWFqSBkwckuLAjzcIypK2XZ2KuNxP/U8XEcdj+t99BFJVVXKfHDO7t3KMcy7uZmkAwd+mgCZMnkyTRg/Xnf81fXrNF4Vze9IQXMlatgp0WeyVHglg6L3pERt+/hA6KiYTX/oqmD7D5rj6emJVLrXFMe2d49G68afLlfA9d1tBWj18n18vY0liAoEbP948yHb/9/v/pb+6+XvRpfaNWaM8rbGVjQmMJCkoiLlbS8aA2aG2uZ8LDdXkQCDMU9ca6htkHUrVlCrLMoGSkmyCA6G7qi53sxp0955wtkpCih+0SnRtXo+IHj0x65KB1i+u7aHuhrCqetIOH3dUdjvubePKpLpmysSpS8wbZN+ydtbsRE4L0kHZWUptozzMdgSc+aMfiN93CBJCWdaECXbDhdk2+GU+6BwSJDDs+ifetoYOF5e2kqvLhXRi7O59Kfec/R1e6Hb14GE+vKiIlXiI0wgmF6snwBF22X16YREH58Vq1A8Ol40kZo/nEKNOTOpYbkP1SQEUlWMhaqiQqgqOphq4oOoYZkP+x7jjm+f6Pa1oYJBmsDmCQ00mcgEyHugWdMl6pJVm+fnFYbsj2lbd4+lxqxZVC0zf2WYjaoirVQtU9W8EKqJs1DtggBXmh/IjqvjKsNtVBFqZwBqzJ5FraVj+73n+cOKqtfV6L5B70kU5DOXMhcsYvsRlmC2/WDSpEG/z7wQG+UtSaXkqOjXTpuJdOlAleP7L89cpIykhaMHIHDRfnlJorMHjRm0Zdc4Jh3A1GDw6phgPRBkal0xj37b2uTY4titTVnU+WE6NaeG6caz6wEsETYmZVqKJxjOA16y39ySKDzYBIUz2QMC6bO2dgaKyo1bqWhVNq1NTROOj7SEUHriAkbRVhs7dnj9Fka4lmjM3NleFB8aTnvzC9nn1QsX0+nScrY/ZswYWhobTwVLl48OgOxcI1HPiX6khfx2r1vkR1XhVqYq8UChpe9PNLts/9L7hOqTLdRXtt3wvGpZylTa7bLECWCANLJPXl6TqCDNBIZKYNi7dc0Ubw+jqo1FjNHLCzdSrC1UKAkgcUDqmIoNW12kDm8Mjn3Seo72rCkkPy9vBsQfH/SxfUgxfO5pbB3ZABk/TqIzssS4VmcAjj1jmMSAtHAXGKCWtCj64dIFas9dxLaQJL8/fZJJkauFK9y6Rk2Chalgdcl+huoXbKXWvSY4vGfMpJXzk9mbPkF+u6vHd+cW0LK4RNMGGQj5eUv0sBUuWDE4GrNnymoPgGFxi6HrZRujNT6EzsTY6MK8MLoWEUHXIyIdhM8d80LpdKyNWuKDqW6+e2CrjgtiNk596lwGWN5c7zQp3rZpU0yQWP1c3f1ZyUsoLSHJBMhAjHGkfRhJjdqkAKF94UyNSUGM6W+GR9GtsCi6FhlJVyLD6XJUOF2UQXJF3gIcV6Mi6JK8j+86IxXg3AmdJ58XSeej7dSQFNi/RJGBWhVhFapdFyslenFBkYymumV6sd5arXrYItGxPWLPVFVkCHPRGjErQHFDZm4A41JUGF2NdJUW7hKkCgBzO2we3ZKvBeljCBIZSJBqzRumCEGCVBaTyUyAvBVBpYK+zmOuY5snM1Wm1uBtfirWSl0yM0NCdLoBio8zs+mz3HzHtr/xkCgAy4m4EDFQZFUOXq+GDC/uc8BV3WLaJCZABkq1xRKdFAT+mtZOU8Axnw8O2Ba3ZRUKkqJzANLiXy5cox+Pn3Js3TpPVtMgTbrk+x1LsBioXEFUuzCA+zwPZCmye63nMZe/9xxmg9j8A2j29BmO476zvShJfvnge3evhdy+ywer+0lafRP/KF2zjgLm+IxMgGzJkqhtv4HkCBWrNlChrsmMq9oTA6GX23bSX5VX0svtJWx7PTLKffVLBsodWZq0yzaKUJrI0q4u2V/o3Uqb71kA2b46h7asXE37CtZT+bqNFGcPY8fhoj344SaaOXWaW7EQeL42pWdS8epc4Rht/GPf2vXUVLx75AEEQcALleLAHwMHR3LAywQ7YyDAuBUaR91BS+lRQDr1+a6mZ3Oz6WOfHHmbI3/Oko+vkL9PZePcvSZULkguIUgSg6hhJV/dQlYAspA9BSD1W3cwht2ZvYauHKphkW7ELjauWEUtJXt0Hi5RnKNm83YqK/iQchalCMeo8Y9fXrhOPrNmMzDVbSkeeQC5JevkTbv53ip4hWo4NsdRmengZbrsBjju2ObTE79VMhBy6ROfPAYMfH7sn66jp/JxfP/JnDXy+Dx66ptJ96wL+rdNIqLYfETeruoYCzXlT9c9IzID4AL2VH1+BMZAhhcgG1bKtsd2vvSAp6omIUgIDrhkjZj2XshCmdHz6JksIR77Z+jA8E3yFvo2Zx99s2gr2z4JzOCAJoNJGFznoSXF8H43cE97tBAkSIiEuqh9Tni1FkZ7JkBGYAxk+AACl+7NI7KNUaoHxxFZJUGmLS/Y1x84btsTmbSA+sSTEir9W9tt+r7gEP359B227QvONBzfNzeLSZb7IYsMvFxRdDc0mguQOtlgh4sarmptSgqyk03vkAkQF6oskujgZn5eFRIDeUwGN6uRWtUj2w8AhxGjq/QPZSforzdU0z9XnGPbT6Py3ToP9gpUL6GdI4OkM4Jvk9Qt8WM5Y9pnviG/KDauMpnPBIhTtPxyjWyEcwKCdYt9uXlVkBpGkuOpXyazH/pj8N7AdOoOTqeH1nR6ALIpW3zGcXzf3zVUm+ZWaCzf7gmFdytUmOzIqzVBSa8ZZR+kHghDW/c/9A/QKjPEvvV8r1UFx6XbFmfV5U45E9QpAMQIFFow8MgxxqZ8hrdLDJQMBhI4Abg2kKxq8eIk6gtAXycv0eGto595EfOAtyolJo4Z6DFWO/NmwRYZh1Y9A+gcIwLCiAYIComu1AgM86RAliWrZSq8kUUBwKey1Hgq8EqBwVWmfxjiCobe8Ez6U+tl3b4zWO67ARSApIvjFobRLrJHQE2FU3XPj4TG0Q4QuFvh6kVBU0lOPu3IyqPSvLUslpGfsrxfhv/28i36v9/+HRcsoH/t+2JkAwQ9p9B7Sic9iico0XINI52LsQtzqXoCl7P4BY9xeyxvJAGPXq0tox+Ptuv2eVLlvl2+XpAxSG6GR3OlCC8tBbZIdbSFm4aSOMpr22u3FFPH/gralpnD6kGw31qyl47tKGXBQncAwuscg24x//3L3498gJw7JNH+DXqAoABJ69ZFMBCBOESttcx317rgtQtXz7CQFkaq1LPEAvq+uJr+/UEfvVi+1bHfF58vPAcggY0iUreg5vFAfF/k1Vrsx1JotHGR5o88z2ZAlR8kyhij1kGeYKTDCBWpVzzpgZR0kfRAbEIEjofWoSFIJBFInvitZFF6HZBlgJyN0Xvl6pf7UC0nDaWn1TSyPRYgqxZJdIjj2oVXp8KuZyIkBPLAgaAd4hJctapfRs+gXvtqehwmS5+wXCfKYce75e+NzjdStyBFboTP46pa3ITGOAu351aYxWREjwTIqXKJdhfoAdKQOpeqY12Nc3iAEHjjS481fE+Vgc3RbVvlBIocehSapaFsdvxJWB4bg/FCkISKDXcc1wHaHsOPsCf76WpHzslqVvV2kxG13Um0nUpGJUAuVvFjHzz1CqrVVU7c44Flifym1ksPI8mhMr8zIL5KK6ZvNx6mn2ftdtl/A5ZctjVyB3Mj7r5ZOikCLxyKuLTP2JDuzVWzIEVMgLh2J9F2Khl1AEGd+alyfpVghU3PPLcE0oOXQtIbJJIeGa+Bka2TGM/nr6dvVu6kvylrdtl3HvM4NIedL1K1HgmCiry8La7Ld6G/rGbpYyJolm0CxLU7ifP+qAQIEvLqdnCKoQqmUWWETZeQKLI/nnPUK5FqxQOGswT5y/Vu+uPeZpd9nurFkyRGUgRBS+28u20x3EYQ8Nxp87PQsGLOLBMgHmWDrFnGj38gMbF6nmusALXfvMg5XLvaXKtH/srbXMvAMLh7BeBgZJcZ35bzhuw5wrGQIj0cmwT35QLEN1OnZj2wR7NuKTw7RJvlCxUrNtRkRiNCRSJULkgW1H5oqwgHsYJweABSuk6iMk56Sd0if5afpHXv8mIfcKWC3AkICqWHFhgulCsECk/VAkB6g/hxEW0dCVSsc5zqw/oUX12tyI0GxeM3mhl8V04+FS5LZ43cRFWBWHAIIHAm57JcVCeiStH5umoV4SBWEA4PQJB/tStfD5BqTlq72k1EZ39wAoM81arHnilLEIHkEILDWZpkcwHSbVupi4sg7sK3Q1xjIlAZUf3Ii4dsP5hLxw5MoqKba6m0fSlrXVqSP/qrC1H9p5bZ8qoCjchrxgzm1Vo1P5nld2mrCFHSO0gVhMMDEBjovBhIZaQ+FQOltNwuJJxUdpH0gIo1EHCcWFdBPWF5dHxDjQMkVWWtdDd+nZMtkkWnsnZRS8E+uhOZRU0bDrJ8LczjfPouqi5peu3qXUHnMkrYnMv2l9OhXbsdIMHzFe1eSzu2ZTk8WavP1lNj5UzKf7Kf9pxbTCcPTaDje0w1SiUY5jerjrDS3FFrgwAgjbvcc/HeEsY/8twGCF965AoBsr+qna4s20lXU4qpOyKfqVrHN1XpDPbyAydox7Er1Jm8jc5m11C3fRN9Mnc9Ve+5SGV13fQssJw+9y6l2o9uy+pXIbUVnKX2VSfpqWUffT63jG6GlNCuhk9pb+Uz6gmopd6Qaurxa6C+BWUudH9tKvX1SYw8HSATJ0ygDWkrR7eRfkqwZMFAIujP5+iLmu6/I0AKp6ZQxdQN9HJ2h4Nezbqo7Hu1M3o1+4Ky9eqgn886y+ib2Sfpizl19MKnjr6epdCXsw8ycIBeeO1hALlvle0R2zJGj4JXUGtckiZx0Zdq5uvbA3XWmsBwpiGyJ0YZQLzfFSCu4OgKWUVJU/ypxDuaLltW6CWL1g4JzXHbkwVngi7lxB7NNdJ5ALlaZ4LCo9y8MNKxyKaWEdC5xH0b5F1VLFcAnAlMfVMC7JvUj6HOj4eIAALiVRrqoulIWlygj6a3V5jM6FEAgQQ5sJEDkCEw0rkGusPFm+sGQHLdioWoFYo66eG/kuvF6uT0z0JXeBjq2uWoURJgMqMHAQQlthVbBFWEmiUM0C2RBxDW08rfNQ6C9HM9SDKYOtSfFHEGSL1fqlMshOfmzeXXiFj46tW9kGRNHISfj4US3Ma8GS6/yb1jyuq9JjNKrOkbiqrUz+ryadpl1UY8QFBJyEs1qV/mQ9XRIboqQl4mL7oeanOxkD3Li6SrKpERSB5as+iiJY3RfetqYQxEpF7dE2T1Yo43w2I0kfQYaou1cppdB9CxjR/oevcmesCque4EC1mSa3mlo7BKXT7Nua3oqADIkji+mxerymrtkOYEC90N05ew3pSPfepdoDfUOQDpdiQqZrmlbvGBoRBS4EUJi/yM3tW6uT+yxrG+XrouJwlB1LJzvMtv8rhNSe70hFak/QUL58ycRY+b25gkUZdP+6T1rEtb0VEBEGuAbIfs53cyOWzRR5hRZORuLQhfzVIi6oYgcYOgWvXYMt0uwYV61RuYxklWjOW3AYoO1v0mn7abqpVHFkzdbBS4eq163Zx1BuEY68hzQjKgO1KEGeyvDey3BQcMfmHRlKCqUNsvi9XVc5rJodtiTVKAR3Y3MQEiWCCH12oUNRHahg1Y8wNuUV6H9uccNavboIuJIklyDdPftTYH1CqcJyy7tYjLbrVz7rXFsRR+ngQ5uma6rnEDVqIyGdEDAQJDvYWzghTKTnlFU3cFahbq0bVZvarLV1RZ2P3as8VKbkPFGbtPXn//UFCbjnuIbA80ur5tT+DWgnAbWkeF6Bb+RIfF+VEmI/bnxdIukDOMJbtD97BY5RUNq7lqVnAYV83q4nizboXFco11kUdL3LQhR9e04WE/TRtEniu4n3nGOUDOU69YNWFCoO53+LzDc5hf68USlmpzvFjaBXKGsWR3aH8UBMG4bX84a4HA6wP3qLCjIscWQX1G/yB5OwI4RL17EeW/FRbD9V7Vzucv+AkPnvNvcLpcWS/FkxbUcfZi8YjnxeppbNUtkDOMJbtD+6OgcIrr7s2dwVWzEDTEwpw6kMiSRbFFMrgdTgYbJPcNwIGO77w6dID7wjx+E2u4ttHJXltqm73UVKs8urs7aq3RYpMrReDN0sQKUMf90MaXIl32eG4C42CCRLU5RG1+lI7yGdz5PbLyXbtwSDSkzdE9/5eXPKvDO9QelMWqBU+8QOH0KVPYGBHBDuGdC3WMN378uHHCgCRslL7jp6l5x0fvt7v79XqZITjGetO6aVwpgs6EIoP9QfAS4Zogj9Q2pLa367ho3G5UiXlAevDmhbjHmVj+4qNVYVadcX7+sKxeNXpeXTlUKFQHigKFUyZPZmNEhFoR3rkACG88OsiLqhdh06CBdnZyyvsFCNIoUHfNNdblCfPWJcQyz12croXMjRqYZrhwDtrzOJfIsvVBtIAJedPTVx1n1NUd9g/uKeqkqFYP6gKDsRZd7hXoZ1clCvDxPJXFneWc36UhwxBUIw7PD4Mevbyln5s3fcCVIlC1oNPfFGT6PgheLOzX69LkIcgVHA80IOkNcmeVqWxuvYeatcvcuhzDHOojKii1z4wadDTV8zRwaJdz7o/epiHDEFQjDs+Pg9QTLGAp8mjVcqTIEflYjzXWYEXbJFZ1yIuRDA5lMBD2BC3jL+Qpg/dxCD/nSol7WHWtRkG/uKasuuVpANEu52zYePAdGjIMcjXi8P1AqBE5c4CTn7VjPB0ODOcy2fH4YOq1xRospBntUH8GExzKeurZzDEgAscTGRzHE4KFS6/VCdqMYhls0ztkerF0hLfmoza+FGkqnMbN0QKhAVuvLElE6pay2m0CaxOkpMdnvLXEwDUAtrvW+YYLdwIc3MZwr71WkB6853x1w1yb0ASIAWFdPuRo8ZgH1Xa8ikNV3YKufztsnuH65XdsiQ5GR2Np0XJtzm1DP2agyGGqGtQ2o+vDu9YjS7QjSfxcK6iKqLvXthcFPTop0Y48k+lMgPSzqE6vzCjnD/FBgvXStZ0XnQ13JDSiGYIREzuDBUVXSAuBGoYYBiRM3+uoPFavhX3RFRrv1vUQn0GlINcgf01wOGB5Oe1zXas3s3ZNgAwgR+uzDona9nFAsmcMVcpvYG22rzOhlBVBuTv9SJPBIrhxYYx3CKLkKmHezYV6oxwZu6ZqZQJkQIRVlT49z5ciUE8qQ226RXa00gRNEWDAi9oGvSsBgE9C4tl96gykBuI4lbLkaFqnX8kWL4HvbntGxeBQLKTjsQABZS5W6rF5IIEkqY4JZmT01oaLFRnAMOKxstON8HcDBWrjERVH0iGu2yBw4b4xyC2yWmVny8rxnuPlNYkWxZhML8roPbGrjP7jxSsWDPzi9AVdVi5WxgXZAwI9DyCg8o0S3RCkxLNu8Mn+VB0VYsikKrXFWeW3fjSTKmBy2CuitqbOHinYFQAYCEY4a7Ywv//7wVaqCrdyDXLQJ+dko3yNCQqjjF4A5M/PvmKxjp+dv6LLyq3YsJU+mDTJMyWISmiadqdJDJIjq7xkRrTpEhuNCPGTy1HhMgAi6b5s1IPgBQMIAB4Y3DD2ITEwTuSyFVFVpNJ4QjTnz9qVrQkK0wYZFEIn+MdtYpBg0RnEFtD0YCCMPNiE+8ONq13jwyVS3inR3g9N5jIBMsiE2ogvLgq8W68JNd3Ijq1JDBpWYNTEBzHHAVbIEs0N3qrv70q0PMlkLBMgQ+jd+uqyOJioGvCor4CaUzPUwEgAMOysK7u24EnbPvQ3tySy+JlMZQJkGOIkWPm1s9YAJK97bAEozFh205B3FxSoAIQ6hevjPkbz6GmV53vajHOYABnmiDtKdSFN0BbHiEHV2EmDrP7UyGABY4PJscwAmiXULfbjx1KS/VmnddYvGJIiXAaFrErhOiLPlDY6/uubEh0pMRnJBMh7IiQ4XqlVun9Ax++PaVWwIM0cTRIgARQQoO1nIAs+AgT4jOP4HgVNGG+kQjkT1D9ExiHhpkx27zm8vd+szDpp0iRGM2fOpDlz5lBYWBhNnTr1zTPPmuU4js8zZswgi8VCISEhjuMTJkygTZs2UUBAgO5eGK+Oi4iIoMDAQLLZbBQZGUljx46liRMnsvv7+vqy73EO7/4+Pj4ux3FdzAFzycvLY1V8OI7nWLduHU2ZMoXGjRvHPuN+GA8aP3482+K4n58fWa1Wxxznzp3ruMdAnlOdI+aP8c7XUM+dPHky+fv7s9/e+XdW7+Pl5eX4D3JychzPM6IA4lJPckxRvYyM+KEkdCH5eadED1oGHhnPzs5mfw4Yc+nSpbRs2TJatWoVJScn04IFC9hn9U9OSUmhxYsXU1xcHPscHx9PR48epaysLMf4wsJCSkxMpNBQ/QKYuP6GDRvYebguPqelpTHmxDm4Bo6vXLmSgSYhIYF7/4yMDDYmKCiIHY+JiWFz3rx5M5WUlLzpw7xkCeXn57M5ARjYB02bNo1yc3MZ4TuMS09Pp9WrV7NrY46ZmZmOewzkOdU5Ysy2bdsc13B+9jVr1rDnwv0KCgocv/uiRYvYffCiUP8D/D4jUoJoCU3WkPT31SVFxRkOYKCGAxFxBP5i7G83b/zpIPyRy5cvZ4S3FhgJDIQ/UGVQfMafnJqayt7+K1asoNLSUlq/fj0bjz914cKFjHnACOo9wJz403HdLVu2MIYEA2IfY9euXcvOBcPh+iC8ncFoovuD+ex2O2M+MBIkBZ4Bc8LbGeOxj3PA9Hhrq/ecPn06Y2DcF/PEOOwXFxezrTpH3ANSwN3ndJ4jCHNXr+H87Pi98UyYT1FREfuMsdjiPpAs6n+Ae40KgDh3S6nYqkiUFx3iasW3IUgoGN5Qo2B84z5wHAz3M4K58IYXfQ91CWPwZme/iawq4BhvLNQHMJlAjTAkgFlVxVRSpRP2oVa5cx13x/X3nLzvB9Q8YvZsBiDR9UYFQLRer82rJepuVeIoz88pLT3vNiv130ZggHsW4HomA+2LCxJ9c0Wix7KEKkxH04D3+1x4Q0NPNhoDOwI0lPOIjY3VARWSAhJiuH6LwXxOqH6wfdwE7OjzPMBewfok23IkaixRuhfeaVaqGZ+fV1S0hy1K93l4oACuxbESBc01vTYmeQBATDLJBIhJJpkAMcmk90v/D3AkNzm1YnBkAAAAAElFTkSuQmCCUEsHCJQ1p+JLHQAARh0AAFBLAwQUAAgACABWYCJDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAVmAiQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdXNtuG8cZvk6eYsAGQQ/Was4HR0ohJwhqwIkD2C2CJrlYkUtqI3LJ7C5lyYmBpkXT9iI3BYLetCgKNE1RFG2goECv0os+QF9ByJP0n5ldkktStEambMpNxT3NzuH//tM3M+udHx4P+ugoyYt0mO22SIRbKMnaw06a9XZb47K7pVs/fPXFnV4y7CX7eYy6w3wQl7stbkumnd3WvmlTo013q6s6ZovjLtsybF9s6TYlFJOuUWy/hdBxkd7Mhm/Fg6QYxe3kXvsgGcR3hu24dA0flOXo5vb2gwcPorqpaJj3tnu9/ei46LQQdDMrdlvVyU2orvHSA+aKU4zJ9jtv3vHVb6VZUcZZO2khO4Rx+uqLL+w8SLPO8AF6kHbKAxgwk7KFDpK0dwCDUhQGtW1LjUAio6RdpkdJAe/OXLpBl4NRyxWLM/v8BX+G+pPxtFAnPUo7Sb7bwhETinLFmVKKC8qJaqFhniZZWRUmVaPbdXU7R2nywNdrz1yTvIXK4bC/H9sq0ccfI4opRjfsgfgDhYOU/hH29zDzB+oP3B+EL8P969wX5b4M92U4a6GjtEj3+8luqxv3C5BhmnVzwG9yXZQn/cT1p7oxHT65AWMq0odQmGGQqRc63Mf4hv2T8MdxJeyZQZKZVst8HNho3SSAyi/eJn2ikbK6Ua71YptUnDNOuaJRP/ALDVTMyBaacv93fwstslXDnG/RXz9ZgxaCpzDEne3aVnYq80DFgS1bqU+ZDAprMMwgYazeEyTAOKQCNReIGDgoisAcEBGIC7gkGkl7VIgpeMARQxrZcoQhZx1Cww9XrjKJBFRm7yowSkSgIY4EQ8QZFUdgSsgZJhgpZVBCCCTgJds8obYKJhGXcMU04tBHa5OKQEEGL8I1NE8RI4jZl4lCVCJp6yPc2rrUtutQJUUSI0lshWDWYNLenKG8RsyORlbiSrPRuGyIqD3o1KflcDTBAkqDQ5r6Pe+gGm7xhZ1+vJ/0IVTcs0gidBT3rUW4hrrDrEQ1iNTf6+Xx6CBtF/eSsoS3CvRBfBTficvk+A0oXdRtu7LtYVa8nQ/L14b98SArEGoP+3jS52GfzJzTSa/hgs084LMPxMwDOXOulrY7hCdoXCTQ/jAv6uJxp3Pblpi6BpDk3ax/citP4sPRMG0OY2fbRZ2dZNzup500zn4CympbsXJBM0GIT4OQELLuyTDv3DspQIXR8U+TfAiyVSwyCryzYYJrxSi8d+IfUc0jaYQUEGUYIZQI6Fw7ttZHcMQN05jAO4T51k7OeaaqxpOjCUjxcTIdby+3xj1zcbu4NexPbzkRvBaPynHuUgjwj7kd117W6ydOTZxxQ3xuH+4Pj+9VDtvXdf9kBFfY92C/50SPbLyDx+53f/LUdmrVc1vd5Dkx1JVwx31/dKVAd32nqkGSeoBk0kxaOHeGW5XR1K7Kar6N8+MsLe/UF2XaPpwO0r7w1niwn0z0p1knWVedO9tzCrZzmORZ0q/0GWAcD8eFN88ZVe8k7XQAl/5BJZLYAvVj6IC/20l6eVJ3vO8SMy8w9xTPaurCbVfVG/lwcDs7ug9aMNeBne26lztFO09HVtvQPsSAw2SqT520iCGEdGbfswYIQ2/bUAHiKa1owDTH5cEwd6kXeBQ4WrvrJwPIs1DpFCsbD5I8bU8EnbscDjo1rvpNeSR8162Y0XD/A/B1k3DoX5riCI8nGkaFcBoGmZPTMHeM+6OD2CaApNK2+CTJGxJydb457FTtV+WKvs0c0SC1+QX0CA3i46pzKN4vwCGWkEADLNk0gfZ9rB0KxjY9h5e4sScn1nPYk256nEy8PUgrfQjaETdGNTWJElz1ISSkhcuRyso23cmP0k4nySYdjjPQI4cGOKtR1WkIFIlX8smrI5CA8wozOlBBtACWcyQTqe+1FlBpGs1yWGYdg4NoAgm+ICR4+QjJ4vjIsvFVtlFYLFikHRQkoiDPh55tebZhx2pdYSOC+rtzVjUrsPZwMIizDspcTvVamrf7SWsa5GNs5YZiYjXdi2Zc1g/avrKqigXpg4nNGEp7UfoNm2iGz07qBWUjY1U6R9/+5o9oal6rTAfPoARPQO49a81BcC1VYrVaiSH8JtkRdBfCPfBVXLHhE+zVBT2s7xyDQLfcrRNS3XpIZtAERcnTY7RXl9+rS+1BnrIlIE4zagnAHqtq3oM0Zctpxx7kKFtOP3yXPsz8KArv/23ulXbT9mpFeNtZTlMPvHK8u3cD5e8v6MKt1brQtMRbl7NEQj3K7rgJ1kh1RLWBPEoxbIzS1iadcRpKiWLSYK7gmbgKU72X9Oz95bZ6awGfeDU+RVVbDUC8Dmv9AhjLElu1Njr1qI0gF4jhFAmwJYXnZX7iAh5vIOSQ2KIqothwSYTUGBshLh+35u0rHYz6aTstJwj0rQLdzkrIthKXbiwmUYdJMrJ5693sfh5nhZ0f82VmkrNpiDse5dAxK/DaWpLjEnQVHuy2Xv5wPCxfuesP7tUm0LZsq/nihZFe6nGFWPC4j0u+65J0IvcL4u34YAH5V3fKnVzyj1u1+Ov0p4zz0jkx5MOmoFphZSiBH86IUw5QGmkkllRwybQGRWGzhvp4odOG0PcuLnS6nmDIVsbCa4GMjgimmkngoZRrqbzZAjDAJ4VmYJ/SUExlGDDsssCw9QCjrjsshEScAZkH34mZoWYpKkyHocIviwpfDyoEX397ITxSinFOwFoEU4RXyBjKDCccKwE2pEygvYjLIiPWhAy/9rhAKgh5BngxDKBIJStcNNWSKwz5B+NCKxqGi7wsLnJNuKjrbzHUpuNYECWIMNpgKaokncFNojXW3GjMtQqDRl0WGrUmIrwstb5ewIhIcAJpuwZf5qeN1wGMviww+qnMUFwPaHRkFAWHxsGjYV3ly5ATGAFZtMDaSAaPAtNl00AGkteLY2PWw0eXJsy4AcwTTSqkxZ34fvJOk7w1caiWLS8EA48gmFOOCWVaEeVjPQV3JgilSlIuIEcLNA+CGyioAKaI1wPCkuR4cyHQEQaF5wAAxRA/FPMz4RG2mx4UIRRSYYFD8y3SpOs2MQ3AIYCyr8JheTq8uVAAJyGCQo8MM9JwTXmFBSECkOCSGgKRngR6JdJk8YQHILEWHv/F0vR3g3HgkZEc2+hgMKaCkgoHSggGekgYEUQbzgNxaJJ2m3oGILEW4v7FOQnvBmOhIqB7QkoCFENguRyK0OkT0mTqlAQAsRauvnzmeHNhoDSC6KAha5XSTv1LVeHAsGQYE8mYBvrHAydMSJOX28wyAIk1cfPl+ewGY8EjrbiEkK0gd6WijtjCUKIZJRxrKmVokGgy8bPTv52dfnV2+p+z0y/hF52d/uPs9M9nX3/mfj9BcONf7uqfZ6ffnJ3+++z0c3f5uXvlKygCBZB78POz07+73y8DoA2g91cE2rnUwkpqJT6CRoRqwEAwo4TrhF+ooco6MQBIKKlN4EwJUXMAeTQ8Rr/3WKAACQew9GU0r94lRDF7FjKWNLKzHQQr8P9EYlZRaxMpQ+F/SjCI4IyLQCHrOSE3lDxEvAFc+5mKF58nXgmpP4aAK5jdQ+elK4AVQBAWlNsN0oqFRt0mP95FOdr1p+gH6LvOR76bv/89uPB3K3Gji8g7gD9fmbwD/fxjlVxBDzgnkjPNuNGqciTAzRilEHglETb5CfD0nQoAir6P8mWCnd/91Znf/eX2Sp3jd+enc6o9XRdYZmxS9t3Oglp0LqcWNIDRXye1sLzczikKQutJRRUZTWwuZiANAJ4YaJuUrIr/AQu/T7jc/qzjCou41FpwyHE5p6aakjKQXEHkhv8g86JO5kHCbTLwm6i9+7+fdQKEGkDDN1CoCgRlKBBqyqRdXZWVTDUoLAFfBkwaMxG6NaFJ4dq773XzuP0RpY8+Uo/++7t1OZAAtndtHIjkEN0p00AhMGUVf1AAB+ZUg8oLO+samDnR5uQGaPg8AjbmUIq2kbLB55JwBMyCXB84IK3S4HM0UYSZOtnCEefA8owUNpHVJJQv0Ca1fgl5+2g/+qjzqLKVCyP0aKHorDk9Qg3b231vlL4UgmkAjb/mmG4BB4TgLJjA3EC4xqE+b56k/9YR679MGfkvLC+EG6enjricWu5+A81Fc0toVnL4rz+FZ389+/pX8Bac/dJdfOJq+WZJA3524BvH+z9zpf7kitfzBbaDn6KXv0PwKyiAQ9E1rfEvn98B0ujVR/q01R2fPtOiwLQ01YoyojTQLez3h21REmnhpnLsErEkKnAVjDanC9rf/voPNA+Q/SZMD1yBUSohDNES2BMQWT+HuUWAUGnOqMZKSqa5Dg19zUkDSgPEvJYl+XOWfVd/bvOMsaCRJSqGSqmENpiLKgkxAAtljHJllx0Dp5Npc4KBB6x00TUtwK/aGLmJONhtkJCXQ1gSBpyP24h64pYiLdUxdlcXNpAnksD9qU1GL2XADtU1rcKv3gy5kQ4KfD6x8pZEgk0YqVQ972a3QxgjDECleWDWwJrUXusALNa1Er9i++O1QEJXG4R0BOSIGUkxlgTyuEAk5lbiCQ6AYl1L8St3PG4oGFgQbL+9FpjaHVt+t7bd96gZRBGNNfwGz8qwufV4FhC42ZqW41dtctxQLKibkRZEcAOIyGrPloik3YKqCfzZjcCBUDQnc6DuACjWtSC/clvjM55CIzJihnEuIEJzyJsIq9cCDNAEBZAwrbQ+N0o//uPHuBr79Iu6130lF/vi8fXHgLD6i3BBgjOju91ukZTu0zifOzK6SvRr+jaZECEUwMCJwazeZ01BKez2Xk6BwJmn9tny6/5TyGnuP4UuWQ1d88Pl5Ao5CLGzi5OlIWLZ7cx3y0HGs7mfK7NISQV+T0MMwkbbrRcLny3PK87kI+am6vheX+qL5lU6ohY0pBuiId1nxI2eGw3ZYhQcNdUUwqOiBtv9ZxumIjN0aaolvRAt6V0lb7MR4tx//+B50RLDI6DiUy3ZPEcyIXJTHTkI0ZGDq+eTyz67f35UhCjT9CQbqCNqiSc5DNGSw6dBdauc0x6eQz0B1dh0XzLhvlMtGYVoyejqKLhLVCe+5DlVEQ6M95m4ku3Zf5vMXtf/mu2r/wdQSwcIJ773lPEOAABqVwAAUEsBAhQAFAAIAAgAVmAiQ5Q1p+JLHQAARh0AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABWYCJDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACPHQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFZgIkMnvveU8Q4AAGpXAAAMAAAAAAAAAAAAAAAAAO0dAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAGC0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.
2. ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಸಂಬಂಧವನ್ನು ನಿರೂಪಿಸಲು ಹೇಳು ವುದು
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಪರಿಧಿಗೂ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳು ವುದು
- ಪ್ರಶ್ನೆಗಳು
ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೇಗಳು
ಚಟುವಟಿಕೆಗಳು #2
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ನೇರ ಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ dirvar.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
1.ಲ್ಯಾಪ್ ಟಾಪ್
2.ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
ಒಂದು ಗ್ರಾಫ್ ಹಾಳೆಯ ಮೇಲೆ ಅಗಲದ ಅಳತೆಯನ್ನು ಸ್ಥಿರವಾಗಿಟ್ಟುಕೊಂಡು ಬೇರೆ ಬೇರೆ ಉದ್ದದ ಅಳತೆಯ ಆಯತಾಕಾರವನ್ನು ರಚಿಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನೀಡು ವುದು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಯತಾಕಾರದ ಒಳಗೆ ಇರುವ ಸಣ್ಣ ಚೌಕಗಳನ್ನು ಏಣಿಸಲು ಹೇಳುವುದು ಚೌಕಗಳ ಸಂಖ್ಯೆಗೂ ಮತ್ತು ಉದ್ದಕ್ಕೂ ಇರುವ ಸಂಬಂಧವನ್ನು ನಿರೂ ಪಿಸಲು ಹೇಳುವುದು .
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಉದ್ದಕ್ಕೂ ಮತ್ತು ವಿಸ್ತೀರ್ಣಕ್ಕೂ ಇರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು ..
- ಪ್ರಶ್ನೆಗಳು
ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಪರಿಹಾರಗಳು.
ಪರಿಕಲ್ಪನೆ #ವಿಲೋಮ ಮಾರ್ಪು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
ವಿಲೋಮ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯುವುದು. ಅನುಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು .
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಪೂರ್ಣಕೋನ 360 ಡಿಗ್ರಿ, ತ್ರಿಜ್ಯಾಂತರ ಖಂಡಗಳ ಸಂಖ್ಯೆ ಹೆಚ್ಚಾದಂತೆ ಅವುಗಳ ನಡುವಿನ ಕೋನ ಕಡಿಮೆಯಾಗುತ್ತದೆ.
ಚಟುವಟಿಕೆಗಳು #೨
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ವಿಲೋಮ ಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ chakra.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
ಲ್ಯಾಪ್ ಟಾಪ್,
ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
<ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIALSVHUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwGyD03wiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAPeUlEQVR42u1de1RVVRrfKhoZFj7DosJ8YWnR6Fo5M7ViLVNXy5QZnYmZMUOHKVB8tCIkpTQFkwmTEpXGFz4QRpSw8kWID5wwxPERvmZZmZqv0CTp3cx8s39bzp3L5dx7z0sj/f74LbjnnrPPuffu3/7e3xZCCHIKRM+Qk+MxGI0AzhHD/a+GgICm/CUzrm+CMBjXPEGiosJo6tTepjF48F00ZEgYf5EMliB6CAwMoDZtAvmLZDBB2DBnMEEMonv3YK+GOZOGwRKEwWAj3TuiozvT0KGd1HX8JfpGT3EjRYlgihPtaaroSDkijDaKrjQxayUdE72oUvSgd0UXWijuUu/HinY0SNxCoaIFf38sQa5NPCSCKEOE0lHRk6rEPYoUM8XtNEF0oGjRmiJFK+pdW0vtRAB1ETeo18NFG0oUt6rr8kUnOllHnhRJmnDBjhAmyM8cA8XNSgqcEffRDtFdkQGT39v5vaW15m/MCNGSUsVtimQgG/5nsjBBfnbSAoTYKrop9QhSwch1v/jxR1P3AdkgTaCWgYghojl//0yQxgus5EWiMx0W9yobw+z1vY4dsxZ7Ek0VUSCp8Bev+fdggjQaQEJgBR9TVEojgztTgGhiaRwQpFlwsOXnuD00jEZk5yqJEiPa8m/DBPnp0UfaBJiQWLnDMmbRHZmZlscCQVqEWfcCdlqxgm5NTFResp0iXJHWKlkZTBDbgPcJ5OgnWqnXTYOC1CS/sWfPq06Qm/r2pZ5Hj1KTgMv2DoixQnSiEtGVgljlYoJcbcB7BFvD0yvVOjqawnfutDRmt61bLRME97xl0KAGxxFHwXOGcQyFCXI1gNUYhvhGHytz15ISahcba4kgVqRPm+HD1T29vY94CmIofcVN/BsyQa4coLYgwp0p7vCp29/QpQv1OnnStMENgrSKjDR1TdPAQENqHVzPIAlLEibIFQMi3yCIkXNvS02lO7OzrzhBOk6davg+kCR7RQ+2SZggzgOTC9Fro5NLW9lhPJvxQpkhSIvQULrvzBkKaNfO8DVZUvrBeOfflAniGKC7H7OgnsBo7lFZ6fIs+UNYTg7dPHCgabeuWTUREf4E0Z5/WyaIfSB9A7p7ZJ0r1yw6FxVR+7g4wwRpGxNjya1r5TPBLuHfmAliC8iiRZKh1evhtoUa1DwkxFGCeHPrGgViN7BH+DdmgtiKkiNj1m40umNKilKH/KaKzJxpiCD+3LpGgSAibCv+rZkglhBTVEKPxY6zpMa4A9ffe/gwBT30kF+PlL/4iVG3rpFneiDxBUrOXsXpKEwQa7Uc74YPUjbEPVVVttQZoFW/fmocd7LtWr788mRt0sRFEMDb+2bdur6cB7BfINWWh/6aExuZIOYDgtDPNcMcrld4oxCnaBkRYT2ZMD+fQpKTL9+jWTP6w4ABlD9jBu2Tx6s3b6Z5J05Q5scf00dr11LJvHk0Y8wY6tOjhy23rjsgdaCawX7R3M8RDqmRTJDrLOahFxCE7o+VF8a0lZwpTPD7P/uM/ipJUbNtG/2rsJDWv/EGvTlpEr2emEh5kiCjiovV68KMDKpYtowulJbS8XXrKFnaJl1WrjTt1lVklISC1IFqhs/g+T5SZ1iKMEEMAxMGTRK82QCYpFjJYVSbSScZ+8QTlHv8OI2WmDVhAr38zDP18M4nn1DMxo0Nji+QRv6msjKK+vZb+pMJVQ/qnPasUM3w7N48Wsgt49+eCWIoGbFa3O+3Kg/EQO0Hcq46yMnuy5APatmSSuUK/sk779DxTZtoWG0tjZGSw5MIb0v1avjevQ2OA09++SWtqaig0/L6VZKYUNG82SmedgYkl7+KRCOfmcEEUaWyq8Xdhs9HYiJsC0zG1sOG1XsPkxfk2JeXR+8vXkzT4+IoLT6eKg8epIE1NTQlIaEeCQrlGH8+cKABOVLXr6d4SRBcizE+XLWKiufOdZHEn51hV2oymCAuIE/JSmwAkxFGfPcdO1zuXEzgHYsWKbhP+NXp6TT9888p1kOdWieJ8/ShQ/WOTR83jh7/7jtaIUnofhwkyU1LM2xn+AOaS2SLO5kATBDf3is0PggWzSyPERwVpaTJ3atX0/iJE+nwmjW6KtN+qSo9+v33NFEa5Nqx0t27aexHH9U/d/9+mnb6dIPr00aPplNyjKH9+xuyM/wBTemQfsIEYIL4TL8occBYhT3SWZLjMUmAFyVZpjz/fMMJLtWlAmmUDz9x4v8SpLycnpQT3XXOtGk04Icf6M2MDN3rYZPAcId3y5+dYQRwbaOenUnABNEFMlxRSuvEWItfeokqCgsp8/hxNcmnVVY2sDlWvfoqjfjqK0pcsuSykS7Vs6fOn3e9//ypU5TloXIBULdgk8Bw37BtG00aNcqRZ0a3R9TZMwmYIF7rzJ1IA4dhfmn7dkqX9gMmdO6CBfTSuXNqtX9FGtDuk/09ed7gb75R5Mlbt45iLlxQx2fl5NBvpO2R8dxzrnMhSaBuwSZ5RapXODYnKYmqS0sd+fyoX7eTmMkEucaBFXSYAyto3NChtCc3t8HKnyvtkviaGoqWUuO1vDyXqpQmyZO0dy8VSckw6osv1PGnLl2iJXLi43+QZI404CGJpldVKcPdfdyP336bHn3wQZ9u36stQZkg1yBgf9itkcAERXQcKSR6xjkIsVRKkT9+/TUlVFfT7OxsWpaZqSb//LVr6bdSmszesoXiJJFwPkgCSZIkJceM6dN1x9yYlUVZ0uax+/mxOGCRYBIwQXSBklonmhogNUQvUu6OmePHU/YHHyhDftLJk5QtJcRIaVMMkmQYLLGkrEyRBJJk9tKlPsdaJO2dcmnH2H3uSIecFEyQaxQXRYQjSXv/3rXL54R2x2ty5U8/ckQR5VD/kVQZFU+/l1IEJHlDGuBGxkAe12cbNth+biwOXETFBPGKCUVbVKDNLgbXSQEz2D/4aaJmvem/EtufTDR9PQx3u88dcexTSsnKYxIwQfRRKx5wZBzavduwBAFmFxTQknnL6D8t+tCPQX1p6qZt9JcLF2haerphCXK2uNgRCQI1k0nABNGFUy06z0vD+hWPmIceUqUhn3DuHD0hVao3Dx9WJJlSvF2pWwvqvFbwbk3xM9b85GQ6smaN7eeGgwIdT5gETBBdYHI40Z7zn7m5ynD2NqEx4Sfv26cIACLMleeCJJAkUJfSJVlguK/IzFQuYMRJtGCiHpDdC8+ZE4ma7MVigviMg1jZ+MbTzQtyrNdJZwdS5EoPeyHt7FnKkQTAsb8dOEBjJRHwPwgyKylJSRG4gOEWLikro5G1tSotxT13SwMyhV8YOdJ+/Ea0V90jmQRMEF1gcsQ5EEl//OGH6aCUBu6TeLJUp0ZUV1OsnOhFblm8OXUxkNS0NBdB8De7okLFSdzTUgqkIY0Ex9gNG+qpXafkeBHdutkOFCKSjk1DmQRMEH0vluigJondcQJbtFAltUg1SXn2WRpdVaUmfoFUp7KkdKhnh0hJkrJ/v+u1RhDESRBM1CLuWpDxQ2mMI1V+QE2NKrqaO3EinVy/3pHPjw13uA0QE8QrUDBktDm1P2S/+CJllJfTQDnh55w+TW/Nm9dANYIkgbrlLg00ggCIuCMtxfM61JNUHjqkKhPjP/2UEiQRnXhmbDyKXmBMAiaIz9JTu93PUTAVIe2KCRcvUvnmzWrl95zkkCRQt1I86kXcCYLrkLvlmeCovYfy3RWSIGgEgW4pdvp3YZ9FfHYmABPEJ1Bua9VQR00GasBRMIUm1C/HxVGFlzQRqFvuqe16BNESHJEFrOfqRTFWbFTU5fvm56u+W/6a0/nq5MIeLCaIoYlidnsAVPGhvSgaOLiv5Ci53bNyJb3lUfAEdQtEmKyT0OhJEACp8qgncT+2ef78Bq5dNKdDB0eQ1EgvYM9SY64FYYL4L5kVzVTZrdGcLPfuIXqTMqRtWzokV/rCOpJANYJNAsNdT7LoESR34ULl6dIqE9+bO1clJ6LuRK+aEWRFCS66yhtRu/BZnVAtmSDXUdp7Pz/bHQSGh1NXaWSj46Kv7iFwu4IkCB4iXlFeWqoMd3i3jBIEQGUiynfRIQUdTTRyeHProrEd2qb6ez6OoDNBLAXMvOnj6IeFhnFYoc1s1AnXb+ro0cpwz3j/fVe1oRGC4NyyggIVPIwdP97UZ4GEQyIiOp54a3KHz8qVhEwQU94s9KuN8HB5YmsC2BloGGd2g04Ahju8W68nJdHFrVuVNIAdgc6JWu6WRhDUk+SlpVGZVK9wLhIS0QgC3VLM3hc2EvZMxLN7khrbWKObCTeNY4KYNta14qGWffqoRmxoyAbVymqnE9gqmpcJEiXqkUeUuxfluSABsoBBENSToIH136WkgpdKU6c8xzALNLnTmspp2yew9GCCWMb2kIfplwuXKhXFs2uiWcC7pbeJjqcNgXv567uF5nR2nqV1dPTlGpDMOXQk+FcsPZgg1vBg5R5KS3ndcjM2DfBuQb0x0rvKnSDeDHB0cLRL2KZBQRSfsYD6F23g35oJYs+jZTc/CZIDrlcj5/qTIICdDTw19OF9QZggTgBGLOIiVjsOapPZqBQyQhBFuvx81VXeUiqMVKlQHGY3tZ8JwnAlMWJCIV/J7LWIQ5jZvs0oQWBwQ22z4k1DOg33v2KCOIpkEaKCaWZUErhUEUw0cx+jBAHgbkZMxsz4KaKj2iyHVSsmiONAvhJqJoyci5UdwUSzbmEzBNHuYXQ7OGQHwO6wIgkZTBBDAcSdItxQ3MDK6m6WIAC2PsCeif7OCxeBKiAYwfUeTJAriRDRXJEEksSbmgKpYdU+MEsQGP9wAvjafRcdE0EONsqZIFdNkkDdgk2ip64gWo20FCtjmyUIgB2lEBvRew+714IcXCnIBPlJDHd4t9xdwAjgIZXD6phWCOLNWwZPFRrBhTrQ64vBBLHsAkacBMFEqDuY4MjdutoEaRUZqSoKETyEGghXLrxVXOPBBGkUwURE3JGWgtwtO2NZJYhKQSlaSzGxzymVCt1Z2JXLBGl0uVtIcARZrHqLrBIEEuwf4UPod0XFSoLw78EEadSp8og3IJUcsQczK7kZgkB9wr0qRQ9bpGQwQX4STxcqEzFxYaPA6wU3qz+bwB9B4DXDnubo34U6cozrrzyYwQRp9I0gsNLDcMakxuSGjQACgTRomK11lQdBIHHwGrXi2BYtoa5nLhq7gWyIwQwUN3MdBxPk2pQs8HwhGo9JDzUM8RS4i7E/CTbxAYngnoX0wfva7rt2909kMEEYDCYIg8EEYTCYIAwGE4TBYIIwGNcD/gdfndI3KDFGDQAAAABJRU5ErkJgglBLBwhKPgabtw8AALIPAABQSwMEFAAIAAgAtJUdQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIALSVHUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Z3ZcuPIlYav20+B0MVcTJio3JceVTtq37S0u3omJubGAZKQhBK3JqkqqcM3jrbD7gfw9bzCuPe9I+YBxu8wTzIngQRFAiCElNQsJD1hd1EEQCx5/i/PyZMLdn9zPhwEr+PpLBmP7u7gEO0E8ag37iej47s7Z/Ojjtr5zXu/2j2Ox8dxdxoFR+PpMJrf3WHmyKR/dyfmEWVdzjq0d8Q6TB6pTtTroU4/Vt2YSMUYkjtBcD5L3h2ND6JhPJtEvfhl7yQeRnvjXjRPL3wyn0/evXPnzZs3YX6pcDw9vnN83A3PZ/2dAG5zNLu7Y/94F0638qM3ND2cIITv/Pv+Xnb6TjKazaNRL94JzCOcJe/96p3dN8moP34TvEn68xN4YCrETnASJ8cn8FCSwEPdMUdNoEQmcW+evI5n8Nulr+lDz4eTnfSwaGT2v5P9FQwWz7MT9JPXST+e3t1BIWaCYaIUo5QqgqnaCcbTJB7N7cHYXvROfrrd10n8Jjuv+Su9JNsJ5uPxoBuZUwa//31AEEHBr80Hzj4IfAiR7ULZNkSzD5J9sOyDZ8ew7OcsO5Rlx7DsGEZ3gtfJLOkO4rs7R9FgBmWYjI6mYL/F99n8YhCn92M3XD4+/jU80yz5GA6mCMo0K3TYjtCvzX8C/mPIFvbSQ+Klq86nZ44XzS8JRmXNr0lu9KQ0vyipek7C1zynqLlo9uCNHpQvXRMulf4//a90RVr3mMUrZt9vdkFjgg084u6dnJVdi0cwOzHHWvnM4+HMAEN1wLXRPQ44wCEkyJwHWMOHJAHgEGAeMA5fsQqE+ZQBlbCDBTRQgTkO0yClgyv4h8n0ZCLgcDKzVQKUAYYLsYDTAKdQsQBQClIwAVJC4QjOAw4/MpfHxJyCioAJ+EZVwOAeDZMSw4EUfgjf4fIkoDig5sdYBkQEwpwPM8O6UObW4ZQkECgQ2JwQsAakM5zheBVQ8zTCFlcympzNV4qoN+znf87Hk4Ut4GiokC7rvayCWqkW39kdRN14AK7ipbFkELyOBoaI9EJH49E8yI1Ism3H02hykvRmL+P5HH41C15Fr6O9aB6fP4ajZ/m102N749Hs/el4/mA8OBuOZkHQGw/Q4p7HA7z0N1ncNXyhSzvY8g6+tEMs/S0rrzuGPcHZLIbrj6ez/PCo339mjrisGqAkD0eDi/vTODqdjJPVx9i9k3qd3fisN0j6STT6NxCruYopl2DJCbFLJ8S5yO9kPO2/vJiBhIPz/4inY7MPhQRhwbTmkgsGnuQi20ORDiUjkggmleKKgcFnvWiQ1kwhw5QzJRWnDGkFuy4q92GEs0vHrxcmis7jy6c9nhq0l748m90fDy43pQXwIJrMz6ZpAAG149Q81b3R8SBORZKiDd65d9odn7+01XV2rg8vJvANZXfQPU4LPjDeDnan/3YXe81N1e03p1vsx5qkR6Sf3ewzPQqUm92UfUicPyBeXCaZpZUZ2rHI5BWV0b3x8mejZL6Xf5knvdPLhzQ/ODgbduOFelbPiW/rnLt3CvLaPY2no3hg1QxmPBufzTI4l4Tej3vJEL5mO2yRRMZQ/wo3kG3tx8fTOL/xQRqWZQWW7kXLOi1tTk/1eDoePhu9/hBUULiB3Tv5Xe7OetNkYtQWdMEDnMaXeuonswgcSH/5dwY/ePSecRRQPHNTNADm2fxkPE0DL6hP4NNQN4iHEGUF81RYo7NhPE16i4IepREc3NSZvW9MQnvrppiDcfcV1HQLZ5j96NKOsHuhMMJ5qrD00ygMgdKiweQkSsM/q7boIp6ulFB6zv1xP7++vfjAxI3BMBmlQd8wOk8r0CDqzqAqnEPoDCYZXYbO2f3lVQlCJjA3P5Hmjwu4KWH+OErO40U9DyWVfAzKiFae6BKHOVTSpxCKztLoaG65TP94mvT78Whxs9EINJRaAqqpSXo4OIg4k/fihxN49rQ+WLK+Nc6VZvqgZCbcOjPxG5iJWzNxvUEz4RubKa3pF+V9b6dkj9Vard4gHKf2MB8Lc6CG5kCNnxBXPaGtvmbGFjzEhIBjFVhITKUUPLUMDgmhmiKMmIYmnHFXH2dN5aypaErCeLLsfvTy1stKkRSLszceDqNRPxilAfGDZNobxDuXEVqETKkGETYEZAV3Ns939LKT2VOUbAM15BJAvbJtVlhZKooq26Abm6ZSsKYU6xQLwVA8eg13C8FXEJwjm5u4QNkNBB/nW86hhDrppgtsN32Ml8wDqpgm58G9/Ph7+VH3IGrsaBoSLqGNSjnEXWBy2E7tJe5B9Nip0sQ9iCQ7ZVVk9/3RKHvWWea0TbicHCW9evO/n9K0av1eyez3682+iuT9rUASC1P+jCgNFiACSWaRhBKXEsP/FKH8l2HyZXxstldDeb9knajeOjN7trz4o+ZYAs/9JCtI09qwR4+C//30PwNWNqGx2ZKXSz+va8NLSwBjGEnFsDCpLESwMjkiYwsUaq0Z0ME1M7DI1BYdCKc0NCjM8RQzalJKN6gOClglw8kg6SXzhRUGRkTPRnOIjOM0NCwHvKdxPDFtjMPRh9NoNDOZzOyYpUB6jRQ+GM8hqiwo4X6mBI3++b//C/4kRhslZP8pmoxn/+IErv3J28Z32S8izMGQUEsqChWlzuxOTA3IkMluwkaBfwEE03ZjdbHfy4p8qYBXCv5//lZf5mnrZFGYcHQxygy5RFILSoTUTGkhmsecjrwuwlLEMmDN58JqvNZqh0dHs3hujMSyYKXDSKVRS01eB/iiae/SkBC65u3BwfjNB/HRID5PzXQzlqwZGxN1ba5aRxeEGArCCgguGBFacYKtizPEKcU0QYIiLcim+Fo2xSpl61j7zIm1z7xnrcOZhU14DNv1kLsheK3Dj4eEgvi0ifI11SZHaCyrQyk5h3iGMyaUVr9EgFlD31UMriPxcycSP/efRCFTe1HlPYiNcXzgAt+DFqHWrDFHpHobrFUQ96DM1xdOfH3hPV8ka+Pxtvu56rZ6IZQpWrPr1mLvetZir2qYX6SZ7pV2vKRZZNnhImQKK9ghJcSb0Obzt8Feq4d6VfTdVNH3TBWlPI7I09wN8zjc4zxOfUqvQYAVu4kj9kwcDasMbto/5SqDa+2vNJql4B+6xF4P33rsdXspeM2oSJN93GoCh4RhJjRWSBPFyC+Sn6jl9WHJOkdudB7dDp1ig1U3wpJTjSTXimNMoeCX6m6twGmbzixlPTqmIZWUCoIg4iZYI4/5rGxAPcyUIOqaSw/dMxYPW5elAANDewmaTcAgMkHbwu6Sm2aElhxrnGYvNtJ0erjSUHq4Lh3xpVNz6ctycwmBL4JnA61rATXPLTWXKoi9neYSz3K3HUIrzdqe9lI1TcuBcROmrk1W6/iCqpVqQggTUhKoR5kgC8DAzRGptMnDq02lJh5WpCNKhb7K2ldOrH11JWu65ax1VMaaYB6zdj3ibshd++gzXWASQTSDEFcSsTwxaLq+oPFJlOaKoI05t7UZwTVWWAXxaycQv/be6XXMFCpDIsXek9iYx0cu9D1qE2vg6QRWTGAkuAQ/R2w9qkKKMWyUgpskj8kKbZ62CuYelQn7xomwb/wnTNqh3F6O7XjUBCd3l/aodW7MNNKowlSDy5JEYJspAbKIphzAUpqCF+ObIuvRKkfr/NW3TjR96z9N2HZqSS9pau6irhssPmppmNgwE7mxOPFRlbeqjw2/c2LtO+9ZY9rOQWo5atWJ5kIrvGjN43pjFtPNx56lm3XIKUdUQIOMMCWkjRN5yBRTiEpCiVIUxJglmxkJMWXc5JspY+DpbmDcVnYTVjYLi5o4cdPEiX+awJJpKTUjAmKarOXHYSvHytTNCBNGqO0dhO1IQuhjGhsSE8q2WhL1wkjchJF4JoxS3xRy65oieNu08WidEl65KeGVb0qo9htFt6FTHRSdBhJbJ4P6auHUTQynHoph2WHIPIZYdRjZ3KFt8hdVw0mikvUfuzTLHt+O7fPFWG6nuXYZ6sss1O/g6r5PT+ZpM3ezlkcJPXEx65O33sLezlFCj7Mq90nJOgO3KndwO9iptxaJ/cOPEnqSKYHxRbLscRlZ9zTZk/YlyEiolJIEUUCRauttNegBYiuhMCJaSbap9LMt9sdZkT9ZlxL73ikl9n0xJYZCs3SVVlhQqiVjit5OSqyC11saI5T3t7U8JVaN0nI02wSoa2PVOrgg6kCcYcUZkkQtRs2ns+C1GRpNCGPQmNkUXcuWWGVsHWk/OJH2w5WkkZaThvOMpZcjhJ6Us0rNgbshdq2Dr0NCIaRAGiklGBacZ/ipUCstILTEGAvT7bpZ+q5icB2JPzqR+OOVJLKWk2iGBmUoejmCocqmVwP51AW/p22CrdlwPLypfta1xW+Re1oG7CcnwH7yPqjMRwh1sJeAPW2Ck7tPe9pKP8aIQhwBQxgYUtSOYg65EIIKgRDDBGO9IbaerpK0zmH97MTTz/7zlIf33Eucmvuo64aLT1saKEIrjSFmZkSZxZSUkpfLuQjEucaEcsmR2BReVe6qNjb8+x9cUIOjvUfNxoZ+Dsd76hoU3qyVVvXz9sCXLhVAOWGUQKioCVIL58bA0xEBMaMibGOLKVUYp4rBdSR+4kTiJ96TiDMQRbW1fQKxMY7PXOB71ibUmvW3baqJtrb0LW/PynT90YmuP3pPF8sqQ+znUNi8N3VNXTmsN2axT3XoW5+qDKVG0EKTiFPOGc1mB8NWwaUgEglCuNSZX6MoZIibFQWllATzrRvStKqFNYqYuCli4psiKjrTLyo632FnNrZJmE52qJOlCYUk3bq1tapEsUYaH7lJ4yPfpFGsFuxisRV1iBkBqUMKglCEUiQRk2pLhVFO0k7dZDD1TAaVNcFFdc1hYrTCKBy8tUJYUyvM3OQw80wO1RFEqa6wk2n+UWKI+lzY3E0Sc88kUR1CVE6ksIvtrYQQHo+Obq6JNcqIfofdtGF+4Jc6ijWDyJscK9UItpPvtieKaDbE+rlL4ub5W0/c3N4Qa6kQM8PcMc/fE0GUoMJ0alCMzUpwmx5h/bxknK4rnd3bojN/c+dmhlkLwigXjFOhzPoOl4vymVqdEIXAdUsI6hbjrDEAyzWEggphrjyuwCtTsM8zPVBRk3B97t7n8bx9/Rw0BNdMEWEcU4TtOEOomqnWkgOjCEP0tqk+xucrmdbn63oz/uSUb/1TOd8qiAIfA48tMcSp6paWHqgi9pYGWrO8vdXyjGs1TMtZ9CZIXRus1uGlQmbCHmAJK4W4XaAK4xAiGyGFNt6PUrkxvir6M0plvsraX51Y++uVrPG2s0a0z28fe17ut2pO3A25ax19OBSCMcYFElLTdMnTjD4hhBm1phQVAutNrYRaYZsqBteR+GcnEv/sv9cz7i4baq29R7ExkC9c8HvRItg6NFQY2nQMWgoIUaqJtLGkoMAaIRSl7wREm5q0t7b8LXQvyoj9xQmxv1yJmGw9Yix//Z+XQ9ZeNAHK3au9aJ0ny96sqQTHGnFENRf5mzUFZhpcnOaSab4pT/ZiFaR1HutTJ5w+9T927Ag7THCxBpBfODX3UtcNGF+0NFQE7yWhMaZMmktJCo02lq/vQjTBmCMswbsxsqnZDC+qPFb9VLy/XZWrLL4p2qYq/fZgAvsxGK2OuOtxd0P6WscgDqWiEB8SgTkzK24tXmBLuFBYSGJWXpJswwheBeI6HD9zxPGzBji2v83Gs6EhzMuJ6lV2vRrKPRcE91oEnAq5MkOsBRGCUmUnihne0gXNqGnMpUuvbB63Cuj2yoh97ojY51uBmE2L+JkV2WsClLtn22ufN2MhAjVprTljFGkm8oASa4w0QQQpjJXeVDpkbxWmdV7rC0ekvtiGIJIyj53WXnNHdd24ca+tEWOjcSRyUwHjXpXXqg8Sv3TE7csGuLU+TWJjxNY32arHCtXklYvm7bmOHur5N3oIo5AxgrlmijJClF2hkYYMlIgJQuZ1g2atIzv0U4aSSBAqg381Yls3HLiyl68ojL6rMPp+CkMhyQTogkqEhJ00QEMzzZETyrmpnDlZjPsUCNobikrK2Natof68XhCxqyBi/wQhQjA4YlApECRBGDR/p5QShJppr1BjSIbsGHFCQg5bKOzi3Awb3jZF7NUr4shVEUf+KaIjQoY5IgSDfcHKaPECP005eAhKjafAWQaC0VBBLYIRx1KYFP3WCWKdFI5dpXDsoRTWxBGdNYFEMY7YulmoNemwoj5OXPVx4qk+KsKJUjRB87moS9EE0mq79bFOGYmrMhIPlVGMK4hdT7UqrChGFWLrwooX9Yp45aqIVx4qojihhTvNZtFb1/h4sU4Np65qOPVPDdUxZmWI2SnFmB6nJ5rNPtyvt/9qHnj/red+t3n24X7JOANXPAe3hmfFq5X+f/bhhmYf7tu+HFTTl7Pv3ouz377+GxYKsCFAp0zsJuzrrEUooU2HCRWUMwKNv031ke6vdN3sr+u0+cqx0+arqk4b02TRSoJLAonrW+sjrXkl2q28/3jdS9Ha02tTjdRKJ2kDsK6NV/sgAxsLJc36gpxSnC+vaFYdxERSDRUo4uD0NsVYRSdpqcxXefvakbevG/Cm2s4btblQ6uXblfbL2Ynm1N2QvdYRyCHCQZwAeuYNselSpov3LUlOwNNhaHKwDRN4FYfraPzGkcZvtsH7dbidi8i8HHVXZdiroTxwQfCgRcBBmwIaCIgwwbBS0KSTdsU64/VgC1VEAm9yc4HlFWNbD8qYfeuI2bfbgJnfL1c6aMKUu3M7aJ1D6zDgi1ElsGaYKZYvtx6atIlEEGdygTnSm1rX4mAVpnWe6ztHpL7bhjjSTO3NAkkvG24Hzb3VdYPHg5aGjaVJv/nLy1Ym/Qq6qZXxD6ocV32s+L0jcd9vgxPr2NnZi0FsPgJ3PexuCF/7EGQhRImaI86UTHuGbCsgpBSZJh2ngps1jjeL4FUgrsPxB0ccf9gKB8hzB+jlGhdVhr2aykMXBg/bRBwKqRn9RTQFt8fMSDCeDwqklDJMJeIam3fDvw3mKsg7LHP2oyNnP24FZzbQ9DNhedgEKnf3dtg6l8ZDM1VIUyIIUsS8RPDyvYJcaSIRIZKxjaVGDldhWue6fnJE6qdtiCStbbiXLbfD5s7qusHjYUvDRozCbHVPJblZ4BMtXJhZDBQCSfMCT7PQxaYYq3Jb9aHiz468/bwNvHXsm814tZ39AO562N0QvvYhyEKhEEWYEckl14LkLTdiXkkDkSUVkim1qZZbhXGqQFyD49//4IZjevxVOOq245jPGPRzyEmVXa+G8n0XBN9vE3BNRlXyjbXa1pa+pe79MmOfODL2yTa4PDsYQbS9w6165GxhMFHRpEPX8bND/8bP8pCbl8cSwhXXGv7Mm3NMM43MoC+mqaJ2+j1QqiiWOBvezs0o5+tbuJVzHSpHtxSFMXIVxsg/YWgQhjS9tBipLEWdLT/EGFfMJLQFVti+6LXDSEi0SN/VJQmlGns88aGBLurVMXFVx8Q/dRQH19vXHhQH46dd+/aVbYwY567AqUFd4/Fruar1cbBODR+5quEj/9RQ4S0uyq4lf3sf1CFUC61Mx5iZd7t1UqivHqaugpj6J4iim8hS+wWXopR9xSds14JCgE8xFQhksaWKqNfFzFUXM/90UZytxbSQ1ZO1Kudqie2LK2q6B4sCmbsKZO6hQIpOA3Nbdax6GPuqgkJzZOvUcbhOC9HviJsWzA9800LRX+RhxapvyVKwhRbI9gWYh/WVQ9dVEF0PBbGm1VHyKhLZ9TqKzY7tqyCarSPpqI2eh9ooeIjF+zdW3Il9/8bWN0Fq0tdFcfRdxdH3UByrPoOgxashSg4G1FFojxDqrzqqFvGIShL4bb0AVjuNfnuF8ev7jJBrl9FS73rWuU6quxpucYEPbnqiNJfQ2pCYSmlfbIDNfEtNEUZQ0YA6rjXfkhXtBaU+mkGZpbY334/j8XHcnUbv/R9QSwcIMQCDIlQXAACS+AAAUEsBAhQAFAAIAAgAtJUdQ0o+Bpu3DwAAsg8AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAC0lR1DRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAD7DwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALSVHUMxAIMiVBcAAJL4AAAMAAAAAAAAAAAAAAAAAFkQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA5ycAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
ಒಂದು ಶಾಲೆಯು 6000 ರೂ ಅನುದಾನದಲ್ಲಿ ಮೌಲ್ಯ ಶಿಕ್ಷಣದ ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿ ಮಾಡಲು ಬಯಸಿದೆ. .ಪ್ರತಿ ಪುಸ್ತಕದ ಬೆಲೆ 40 ರೂ ಪ್ರಕಾರ ಎಷ್ಟು ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿಸಬಹುದು ? ಇದೇ ರೀತಿ ಪುಸ್ತಕದ ಬೆಲೆ 50ರೂ ,60 ರೂ, 75ರೂ ,80ರೂ 100ರೂ ಗಳಾದಾಗ ಎಷ್ಟು ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿಸಬಹುದು ಎಂಬುದನ್ನು ವಿದ್ಯಾರ್ಥಿಗಳಿಂದ ಪಟ್ಟಿ ಮಾಡಿಸುವುದು.
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಪಟ್ಟಿಯಿಂದ ಖರೀದಿಸಿದ ಪುಸ್ತಕಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪ್ರತಿ ಪ್ರತಿ ಪುಸ್ತಕದ ಬೆಲೆ ಅವುಗಳ ನಡುವಿನ ಸಂಬಂಧ. ಮತ್ತು ಅವೆರಡರ ಗುಣಲಬ್ಧ ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು . ನಂತರ ಖರೀದಿಸಿದ ಪುಸ್ತಕಗಳ ಸಂಖ್ಯೆ ಗಳ ನಡುವಿನ ಅನುಪಾತ ಮತ್ತು ಪುಸ್ತಕದ ಬೆಲೆಗಳ ನಡುವೆ ಇರುವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು
- ಪ್ರಶ್ನೆಗಳು
ವಿಲೋಮ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆ ಗಳು.
ಚಟುವಟಿಕೆಗಳು #
- ಅಂದಾಜು ಸಮಯ
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
- ಮೌಲ್ಯ ನಿರ್ಣಯ
- ಪ್ರಶ್ನೆಗಳು
ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು
ಕೆಲಸ ಮತ್ತು ಕಾಲ ಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಸಮಸ್ಯೆಗಳು
ಯೋಜನೆಗಳು
ಗಣಿತ ವಿನೋದ
ಬಳಕೆ
ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು {{subst:ಗಣಿತ-ವಿಷಯ}} ಅನ್ನು ಟೈಪ್ ಮಾಡಿ