"ಮಾರ್ಪಿನ ವಿಧಗಳು" ಆವೃತ್ತಿಗಳ ಮಧ್ಯದ ಬದಲಾವಣೆಗಳು
೬೪ ನೇ ಸಾಲು: | ೬೪ ನೇ ಸಾಲು: | ||
*ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | *ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು | ||
+ | <ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAFZgIkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFGHbniiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAdDUlEQVR42u1dWVQUWZoOd8tdEFkTMpNVdlRURBEU2QSl3FEULRTFhR1EUFBcwRU33AEXrLKqrK27tZeqrp7p7jkzU2emZk4/zZnp0w9zzrzM25wzZ15m/onvhpFmRtwbJApYkPHwn4iMvBFxI/P/4t//K0mSRCaZZJKQzB/BJAH5+pJktZKUkkLSsmUkxcSQlJxMUloaSePGKWP8/ZUxy5eTNH26ck58PEmxsa7XUsfZbCTNnu16j6QkkhITSUpNVY75+ZG0cCFJERFvzsMcnMeHhpI0dSpJISHKfceOVT6DcD7OWbr0pw0Q+uGH9/LHTpksUWKERB9mSFS5VaKOwxI9apPo03aJvr4s0ecdEj05LVG7fPzwFonWrZBoQbRy3oCf8fu/Z8T7HOLrT//z6z+MXIAUF5N0+jRJeXkklZSQtGMHSaWlJEVGkpSfr4zZvp2kLVtIKiwk6eBBZezvfkfS3r2uQFDH7dtHUnk5SXFxyvHMTOU80L17yrGjRxXCsbIy5bycHNfxOL5rF0nV1QpocV/MF8fw/caNJK1f/9MEiAoMZ4Bgf6385sH2P7/9dlDvN3miREU5EvXJTP+rGxL99o5EX1yU6Kn8+W6zRJerJTpRpqertRLdPy7RszMSfXVJOe97mfrkz0XZynXdBYnz/j/ef8r2HzWddPluxFFtLUkdHSRt20bS4cPKfmsrSceOKUyIMfX1CohAYOo9e0h6/FgZ6+X15lrquJ07SbpyRWFqSBkwckuLAjzcIypK2XZ2KuNxP/U8XEcdj+t99BFJVVXKfHDO7t3KMcy7uZmkAwd+mgCZMnkyTRg/Xnf81fXrNF4Vze9IQXMlatgp0WeyVHglg6L3pERt+/hA6KiYTX/oqmD7D5rj6emJVLrXFMe2d49G68afLlfA9d1tBWj18n18vY0liAoEbP948yHb/9/v/pb+6+XvRpfaNWaM8rbGVjQmMJCkoiLlbS8aA2aG2uZ8LDdXkQCDMU9ca6htkHUrVlCrLMoGSkmyCA6G7qi53sxp0955wtkpCih+0SnRtXo+IHj0x65KB1i+u7aHuhrCqetIOH3dUdjvubePKpLpmysSpS8wbZN+ydtbsRE4L0kHZWUptozzMdgSc+aMfiN93CBJCWdaECXbDhdk2+GU+6BwSJDDs+ifetoYOF5e2kqvLhXRi7O59Kfec/R1e6Hb14GE+vKiIlXiI0wgmF6snwBF22X16YREH58Vq1A8Ol40kZo/nEKNOTOpYbkP1SQEUlWMhaqiQqgqOphq4oOoYZkP+x7jjm+f6Pa1oYJBmsDmCQ00mcgEyHugWdMl6pJVm+fnFYbsj2lbd4+lxqxZVC0zf2WYjaoirVQtU9W8EKqJs1DtggBXmh/IjqvjKsNtVBFqZwBqzJ5FraVj+73n+cOKqtfV6L5B70kU5DOXMhcsYvsRlmC2/WDSpEG/z7wQG+UtSaXkqOjXTpuJdOlAleP7L89cpIykhaMHIHDRfnlJorMHjRm0Zdc4Jh3A1GDw6phgPRBkal0xj37b2uTY4titTVnU+WE6NaeG6caz6wEsETYmZVqKJxjOA16y39ySKDzYBIUz2QMC6bO2dgaKyo1bqWhVNq1NTROOj7SEUHriAkbRVhs7dnj9Fka4lmjM3NleFB8aTnvzC9nn1QsX0+nScrY/ZswYWhobTwVLl48OgOxcI1HPiX6khfx2r1vkR1XhVqYq8UChpe9PNLts/9L7hOqTLdRXtt3wvGpZylTa7bLECWCANLJPXl6TqCDNBIZKYNi7dc0Ubw+jqo1FjNHLCzdSrC1UKAkgcUDqmIoNW12kDm8Mjn3Seo72rCkkPy9vBsQfH/SxfUgxfO5pbB3ZABk/TqIzssS4VmcAjj1jmMSAtHAXGKCWtCj64dIFas9dxLaQJL8/fZJJkauFK9y6Rk2Chalgdcl+huoXbKXWvSY4vGfMpJXzk9mbPkF+u6vHd+cW0LK4RNMGGQj5eUv0sBUuWDE4GrNnymoPgGFxi6HrZRujNT6EzsTY6MK8MLoWEUHXIyIdhM8d80LpdKyNWuKDqW6+e2CrjgtiNk596lwGWN5c7zQp3rZpU0yQWP1c3f1ZyUsoLSHJBMhAjHGkfRhJjdqkAKF94UyNSUGM6W+GR9GtsCi6FhlJVyLD6XJUOF2UQXJF3gIcV6Mi6JK8j+86IxXg3AmdJ58XSeej7dSQFNi/RJGBWhVhFapdFyslenFBkYymumV6sd5arXrYItGxPWLPVFVkCHPRGjErQHFDZm4A41JUGF2NdJUW7hKkCgBzO2we3ZKvBeljCBIZSJBqzRumCEGCVBaTyUyAvBVBpYK+zmOuY5snM1Wm1uBtfirWSl0yM0NCdLoBio8zs+mz3HzHtr/xkCgAy4m4EDFQZFUOXq+GDC/uc8BV3WLaJCZABkq1xRKdFAT+mtZOU8Axnw8O2Ba3ZRUKkqJzANLiXy5cox+Pn3Js3TpPVtMgTbrk+x1LsBioXEFUuzCA+zwPZCmye63nMZe/9xxmg9j8A2j29BmO476zvShJfvnge3evhdy+ywer+0lafRP/KF2zjgLm+IxMgGzJkqhtv4HkCBWrNlChrsmMq9oTA6GX23bSX5VX0svtJWx7PTLKffVLBsodWZq0yzaKUJrI0q4u2V/o3Uqb71kA2b46h7asXE37CtZT+bqNFGcPY8fhoj344SaaOXWaW7EQeL42pWdS8epc4Rht/GPf2vXUVLx75AEEQcALleLAHwMHR3LAywQ7YyDAuBUaR91BS+lRQDr1+a6mZ3Oz6WOfHHmbI3/Oko+vkL9PZePcvSZULkguIUgSg6hhJV/dQlYAspA9BSD1W3cwht2ZvYauHKphkW7ELjauWEUtJXt0Hi5RnKNm83YqK/iQchalCMeo8Y9fXrhOPrNmMzDVbSkeeQC5JevkTbv53ip4hWo4NsdRmengZbrsBjju2ObTE79VMhBy6ROfPAYMfH7sn66jp/JxfP/JnDXy+Dx66ptJ96wL+rdNIqLYfETeruoYCzXlT9c9IzID4AL2VH1+BMZAhhcgG1bKtsd2vvSAp6omIUgIDrhkjZj2XshCmdHz6JksIR77Z+jA8E3yFvo2Zx99s2gr2z4JzOCAJoNJGFznoSXF8H43cE97tBAkSIiEuqh9Tni1FkZ7JkBGYAxk+AACl+7NI7KNUaoHxxFZJUGmLS/Y1x84btsTmbSA+sSTEir9W9tt+r7gEP359B227QvONBzfNzeLSZb7IYsMvFxRdDc0mguQOtlgh4sarmptSgqyk03vkAkQF6oskujgZn5eFRIDeUwGN6uRWtUj2w8AhxGjq/QPZSforzdU0z9XnGPbT6Py3ToP9gpUL6GdI4OkM4Jvk9Qt8WM5Y9pnviG/KDauMpnPBIhTtPxyjWyEcwKCdYt9uXlVkBpGkuOpXyazH/pj8N7AdOoOTqeH1nR6ALIpW3zGcXzf3zVUm+ZWaCzf7gmFdytUmOzIqzVBSa8ZZR+kHghDW/c/9A/QKjPEvvV8r1UFx6XbFmfV5U45E9QpAMQIFFow8MgxxqZ8hrdLDJQMBhI4Abg2kKxq8eIk6gtAXycv0eGto595EfOAtyolJo4Z6DFWO/NmwRYZh1Y9A+gcIwLCiAYIComu1AgM86RAliWrZSq8kUUBwKey1Hgq8EqBwVWmfxjiCobe8Ez6U+tl3b4zWO67ARSApIvjFobRLrJHQE2FU3XPj4TG0Q4QuFvh6kVBU0lOPu3IyqPSvLUslpGfsrxfhv/28i36v9/+HRcsoH/t+2JkAwQ9p9B7Sic9iico0XINI52LsQtzqXoCl7P4BY9xeyxvJAGPXq0tox+Ptuv2eVLlvl2+XpAxSG6GR3OlCC8tBbZIdbSFm4aSOMpr22u3FFPH/gralpnD6kGw31qyl47tKGXBQncAwuscg24x//3L3498gJw7JNH+DXqAoABJ69ZFMBCBOESttcx317rgtQtXz7CQFkaq1LPEAvq+uJr+/UEfvVi+1bHfF58vPAcggY0iUreg5vFAfF/k1Vrsx1JotHGR5o88z2ZAlR8kyhij1kGeYKTDCBWpVzzpgZR0kfRAbEIEjofWoSFIJBFInvitZFF6HZBlgJyN0Xvl6pf7UC0nDaWn1TSyPRYgqxZJdIjj2oVXp8KuZyIkBPLAgaAd4hJctapfRs+gXvtqehwmS5+wXCfKYce75e+NzjdStyBFboTP46pa3ITGOAu351aYxWREjwTIqXKJdhfoAdKQOpeqY12Nc3iAEHjjS481fE+Vgc3RbVvlBIocehSapaFsdvxJWB4bg/FCkISKDXcc1wHaHsOPsCf76WpHzslqVvV2kxG13Um0nUpGJUAuVvFjHzz1CqrVVU7c44Flifym1ksPI8mhMr8zIL5KK6ZvNx6mn2ftdtl/A5ZctjVyB3Mj7r5ZOikCLxyKuLTP2JDuzVWzIEVMgLh2J9F2Khl1AEGd+alyfpVghU3PPLcE0oOXQtIbJJIeGa+Bka2TGM/nr6dvVu6kvylrdtl3HvM4NIedL1K1HgmCiry8La7Ld6G/rGbpYyJolm0CxLU7ifP+qAQIEvLqdnCKoQqmUWWETZeQKLI/nnPUK5FqxQOGswT5y/Vu+uPeZpd9nurFkyRGUgRBS+28u20x3EYQ8Nxp87PQsGLOLBMgHmWDrFnGj38gMbF6nmusALXfvMg5XLvaXKtH/srbXMvAMLh7BeBgZJcZ35bzhuw5wrGQIj0cmwT35QLEN1OnZj2wR7NuKTw7RJvlCxUrNtRkRiNCRSJULkgW1H5oqwgHsYJweABSuk6iMk56Sd0if5afpHXv8mIfcKWC3AkICqWHFhgulCsECk/VAkB6g/hxEW0dCVSsc5zqw/oUX12tyI0GxeM3mhl8V04+FS5LZ43cRFWBWHAIIHAm57JcVCeiStH5umoV4SBWEA4PQJB/tStfD5BqTlq72k1EZ39wAoM81arHnilLEIHkEILDWZpkcwHSbVupi4sg7sK3Q1xjIlAZUf3Ii4dsP5hLxw5MoqKba6m0fSlrXVqSP/qrC1H9p5bZ8qoCjchrxgzm1Vo1P5nld2mrCFHSO0gVhMMDEBjovBhIZaQ+FQOltNwuJJxUdpH0gIo1EHCcWFdBPWF5dHxDjQMkVWWtdDd+nZMtkkWnsnZRS8E+uhOZRU0bDrJ8LczjfPouqi5peu3qXUHnMkrYnMv2l9OhXbsdIMHzFe1eSzu2ZTk8WavP1lNj5UzKf7Kf9pxbTCcPTaDje0w1SiUY5jerjrDS3FFrgwAgjbvcc/HeEsY/8twGCF965AoBsr+qna4s20lXU4qpOyKfqVrHN1XpDPbyAydox7Er1Jm8jc5m11C3fRN9Mnc9Ve+5SGV13fQssJw+9y6l2o9uy+pXIbUVnKX2VSfpqWUffT63jG6GlNCuhk9pb+Uz6gmopd6Qaurxa6C+BWUudH9tKvX1SYw8HSATJ0ygDWkrR7eRfkqwZMFAIujP5+iLmu6/I0AKp6ZQxdQN9HJ2h4Nezbqo7Hu1M3o1+4Ky9eqgn886y+ib2Sfpizl19MKnjr6epdCXsw8ycIBeeO1hALlvle0R2zJGj4JXUGtckiZx0Zdq5uvbA3XWmsBwpiGyJ0YZQLzfFSCu4OgKWUVJU/ypxDuaLltW6CWL1g4JzXHbkwVngi7lxB7NNdJ5ALlaZ4LCo9y8MNKxyKaWEdC5xH0b5F1VLFcAnAlMfVMC7JvUj6HOj4eIAALiVRrqoulIWlygj6a3V5jM6FEAgQQ5sJEDkCEw0rkGusPFm+sGQHLdioWoFYo66eG/kuvF6uT0z0JXeBjq2uWoURJgMqMHAQQlthVbBFWEmiUM0C2RBxDW08rfNQ6C9HM9SDKYOtSfFHEGSL1fqlMshOfmzeXXiFj46tW9kGRNHISfj4US3Ma8GS6/yb1jyuq9JjNKrOkbiqrUz+ryadpl1UY8QFBJyEs1qV/mQ9XRIboqQl4mL7oeanOxkD3Li6SrKpERSB5as+iiJY3RfetqYQxEpF7dE2T1Yo43w2I0kfQYaou1cppdB9CxjR/oevcmesCque4EC1mSa3mlo7BKXT7Nua3oqADIkji+mxerymrtkOYEC90N05ew3pSPfepdoDfUOQDpdiQqZrmlbvGBoRBS4EUJi/yM3tW6uT+yxrG+XrouJwlB1LJzvMtv8rhNSe70hFak/QUL58ycRY+b25gkUZdP+6T1rEtb0VEBEGuAbIfs53cyOWzRR5hRZORuLQhfzVIi6oYgcYOgWvXYMt0uwYV61RuYxklWjOW3AYoO1v0mn7abqpVHFkzdbBS4eq163Zx1BuEY68hzQjKgO1KEGeyvDey3BQcMfmHRlKCqUNsvi9XVc5rJodtiTVKAR3Y3MQEiWCCH12oUNRHahg1Y8wNuUV6H9uccNavboIuJIklyDdPftTYH1CqcJyy7tYjLbrVz7rXFsRR+ngQ5uma6rnEDVqIyGdEDAQJDvYWzghTKTnlFU3cFahbq0bVZvarLV1RZ2P3as8VKbkPFGbtPXn//UFCbjnuIbA80ur5tT+DWgnAbWkeF6Bb+RIfF+VEmI/bnxdIukDOMJbtD97BY5RUNq7lqVnAYV83q4nizboXFco11kUdL3LQhR9e04WE/TRtEniu4n3nGOUDOU69YNWFCoO53+LzDc5hf68USlmpzvFjaBXKGsWR3aH8UBMG4bX84a4HA6wP3qLCjIscWQX1G/yB5OwI4RL17EeW/FRbD9V7Vzucv+AkPnvNvcLpcWS/FkxbUcfZi8YjnxeppbNUtkDOMJbtD+6OgcIrr7s2dwVWzEDTEwpw6kMiSRbFFMrgdTgYbJPcNwIGO77w6dID7wjx+E2u4ttHJXltqm73UVKs8urs7aq3RYpMrReDN0sQKUMf90MaXIl32eG4C42CCRLU5RG1+lI7yGdz5PbLyXbtwSDSkzdE9/5eXPKvDO9QelMWqBU+8QOH0KVPYGBHBDuGdC3WMN378uHHCgCRslL7jp6l5x0fvt7v79XqZITjGetO6aVwpgs6EIoP9QfAS4Zogj9Q2pLa367ho3G5UiXlAevDmhbjHmVj+4qNVYVadcX7+sKxeNXpeXTlUKFQHigKFUyZPZmNEhFoR3rkACG88OsiLqhdh06CBdnZyyvsFCNIoUHfNNdblCfPWJcQyz12croXMjRqYZrhwDtrzOJfIsvVBtIAJedPTVx1n1NUd9g/uKeqkqFYP6gKDsRZd7hXoZ1clCvDxPJXFneWc36UhwxBUIw7PD4Mevbyln5s3fcCVIlC1oNPfFGT6PgheLOzX69LkIcgVHA80IOkNcmeVqWxuvYeatcvcuhzDHOojKii1z4wadDTV8zRwaJdz7o/epiHDEFQjDs+Pg9QTLGAp8mjVcqTIEflYjzXWYEXbJFZ1yIuRDA5lMBD2BC3jL+Qpg/dxCD/nSol7WHWtRkG/uKasuuVpANEu52zYePAdGjIMcjXi8P1AqBE5c4CTn7VjPB0ODOcy2fH4YOq1xRospBntUH8GExzKeurZzDEgAscTGRzHE4KFS6/VCdqMYhls0ztkerF0hLfmoza+FGkqnMbN0QKhAVuvLElE6pay2m0CaxOkpMdnvLXEwDUAtrvW+YYLdwIc3MZwr71WkB6853x1w1yb0ASIAWFdPuRo8ZgH1Xa8ikNV3YKufztsnuH65XdsiQ5GR2Np0XJtzm1DP2agyGGqGtQ2o+vDu9YjS7QjSfxcK6iKqLvXthcFPTop0Y48k+lMgPSzqE6vzCjnD/FBgvXStZ0XnQ13JDSiGYIREzuDBUVXSAuBGoYYBiRM3+uoPFavhX3RFRrv1vUQn0GlINcgf01wOGB5Oe1zXas3s3ZNgAwgR+uzDona9nFAsmcMVcpvYG22rzOhlBVBuTv9SJPBIrhxYYx3CKLkKmHezYV6oxwZu6ZqZQJkQIRVlT49z5ciUE8qQ226RXa00gRNEWDAi9oGvSsBgE9C4tl96gykBuI4lbLkaFqnX8kWL4HvbntGxeBQLKTjsQABZS5W6rF5IIEkqY4JZmT01oaLFRnAMOKxstON8HcDBWrjERVH0iGu2yBw4b4xyC2yWmVny8rxnuPlNYkWxZhML8roPbGrjP7jxSsWDPzi9AVdVi5WxgXZAwI9DyCg8o0S3RCkxLNu8Mn+VB0VYsikKrXFWeW3fjSTKmBy2CuitqbOHinYFQAYCEY4a7Ywv//7wVaqCrdyDXLQJ+dko3yNCQqjjF4A5M/PvmKxjp+dv6LLyq3YsJU+mDTJMyWISmiadqdJDJIjq7xkRrTpEhuNCPGTy1HhMgAi6b5s1IPgBQMIAB4Y3DD2ITEwTuSyFVFVpNJ4QjTnz9qVrQkK0wYZFEIn+MdtYpBg0RnEFtD0YCCMPNiE+8ONq13jwyVS3inR3g9N5jIBMsiE2ogvLgq8W68JNd3Ijq1JDBpWYNTEBzHHAVbIEs0N3qrv70q0PMlkLBMgQ+jd+uqyOJioGvCor4CaUzPUwEgAMOysK7u24EnbPvQ3tySy+JlMZQJkGOIkWPm1s9YAJK97bAEozFh205B3FxSoAIQ6hevjPkbz6GmV53vajHOYABnmiDtKdSFN0BbHiEHV2EmDrP7UyGABY4PJscwAmiXULfbjx1KS/VmnddYvGJIiXAaFrErhOiLPlDY6/uubEh0pMRnJBMh7IiQ4XqlVun9Ax++PaVWwIM0cTRIgARQQoO1nIAs+AgT4jOP4HgVNGG+kQjkT1D9ExiHhpkx27zm8vd+szDpp0iRGM2fOpDlz5lBYWBhNnTr1zTPPmuU4js8zZswgi8VCISEhjuMTJkygTZs2UUBAgO5eGK+Oi4iIoMDAQLLZbBQZGUljx46liRMnsvv7+vqy73EO7/4+Pj4ux3FdzAFzycvLY1V8OI7nWLduHU2ZMoXGjRvHPuN+GA8aP3482+K4n58fWa1Wxxznzp3ruMdAnlOdI+aP8c7XUM+dPHky+fv7s9/e+XdW7+Pl5eX4D3JychzPM6IA4lJPckxRvYyM+KEkdCH5eadED1oGHhnPzs5mfw4Yc+nSpbRs2TJatWoVJScn04IFC9hn9U9OSUmhxYsXU1xcHPscHx9PR48epaysLMf4wsJCSkxMpNBQ/QKYuP6GDRvYebguPqelpTHmxDm4Bo6vXLmSgSYhIYF7/4yMDDYmKCiIHY+JiWFz3rx5M5WUlLzpw7xkCeXn57M5ARjYB02bNo1yc3MZ4TuMS09Pp9WrV7NrY46ZmZmOewzkOdU5Ysy2bdsc13B+9jVr1rDnwv0KCgocv/uiRYvYffCiUP8D/D4jUoJoCU3WkPT31SVFxRkOYKCGAxFxBP5i7G83b/zpIPyRy5cvZ4S3FhgJDIQ/UGVQfMafnJqayt7+K1asoNLSUlq/fj0bjz914cKFjHnACOo9wJz403HdLVu2MIYEA2IfY9euXcvOBcPh+iC8ncFoovuD+ex2O2M+MBIkBZ4Bc8LbGeOxj3PA9Hhrq/ecPn06Y2DcF/PEOOwXFxezrTpH3ANSwN3ndJ4jCHNXr+H87Pi98UyYT1FREfuMsdjiPpAs6n+Ae40KgDh3S6nYqkiUFx3iasW3IUgoGN5Qo2B84z5wHAz3M4K58IYXfQ91CWPwZme/iawq4BhvLNQHMJlAjTAkgFlVxVRSpRP2oVa5cx13x/X3nLzvB9Q8YvZsBiDR9UYFQLRer82rJepuVeIoz88pLT3vNiv130ZggHsW4HomA+2LCxJ9c0Wix7KEKkxH04D3+1x4Q0NPNhoDOwI0lPOIjY3VARWSAhJiuH6LwXxOqH6wfdwE7OjzPMBewfok23IkaixRuhfeaVaqGZ+fV1S0hy1K93l4oACuxbESBc01vTYmeQBATDLJBIhJJpkAMcmk90v/D3AkNzm1YnBkAAAAAElFTkSuQmCCUEsHCJQ1p+JLHQAARh0AAFBLAwQUAAgACABWYCJDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAVmAiQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdXNtuG8cZvk6eYsAGQQ/Was4HR0ohJwhqwIkD2C2CJrlYkUtqI3LJ7C5lyYmBpkXT9iI3BYLetCgKNE1RFG2goECv0os+QF9ByJP0n5ldkktStEambMpNxT3NzuH//tM3M+udHx4P+ugoyYt0mO22SIRbKMnaw06a9XZb47K7pVs/fPXFnV4y7CX7eYy6w3wQl7stbkumnd3WvmlTo013q6s6ZovjLtsybF9s6TYlFJOuUWy/hdBxkd7Mhm/Fg6QYxe3kXvsgGcR3hu24dA0flOXo5vb2gwcPorqpaJj3tnu9/ei46LQQdDMrdlvVyU2orvHSA+aKU4zJ9jtv3vHVb6VZUcZZO2khO4Rx+uqLL+w8SLPO8AF6kHbKAxgwk7KFDpK0dwCDUhQGtW1LjUAio6RdpkdJAe/OXLpBl4NRyxWLM/v8BX+G+pPxtFAnPUo7Sb7bwhETinLFmVKKC8qJaqFhniZZWRUmVaPbdXU7R2nywNdrz1yTvIXK4bC/H9sq0ccfI4opRjfsgfgDhYOU/hH29zDzB+oP3B+EL8P969wX5b4M92U4a6GjtEj3+8luqxv3C5BhmnVzwG9yXZQn/cT1p7oxHT65AWMq0odQmGGQqRc63Mf4hv2T8MdxJeyZQZKZVst8HNho3SSAyi/eJn2ikbK6Ua71YptUnDNOuaJRP/ALDVTMyBaacv93fwstslXDnG/RXz9ZgxaCpzDEne3aVnYq80DFgS1bqU+ZDAprMMwgYazeEyTAOKQCNReIGDgoisAcEBGIC7gkGkl7VIgpeMARQxrZcoQhZx1Cww9XrjKJBFRm7yowSkSgIY4EQ8QZFUdgSsgZJhgpZVBCCCTgJds8obYKJhGXcMU04tBHa5OKQEEGL8I1NE8RI4jZl4lCVCJp6yPc2rrUtutQJUUSI0lshWDWYNLenKG8RsyORlbiSrPRuGyIqD3o1KflcDTBAkqDQ5r6Pe+gGm7xhZ1+vJ/0IVTcs0gidBT3rUW4hrrDrEQ1iNTf6+Xx6CBtF/eSsoS3CvRBfBTficvk+A0oXdRtu7LtYVa8nQ/L14b98SArEGoP+3jS52GfzJzTSa/hgs084LMPxMwDOXOulrY7hCdoXCTQ/jAv6uJxp3Pblpi6BpDk3ax/citP4sPRMG0OY2fbRZ2dZNzup500zn4CympbsXJBM0GIT4OQELLuyTDv3DspQIXR8U+TfAiyVSwyCryzYYJrxSi8d+IfUc0jaYQUEGUYIZQI6Fw7ttZHcMQN05jAO4T51k7OeaaqxpOjCUjxcTIdby+3xj1zcbu4NexPbzkRvBaPynHuUgjwj7kd117W6ydOTZxxQ3xuH+4Pj+9VDtvXdf9kBFfY92C/50SPbLyDx+53f/LUdmrVc1vd5Dkx1JVwx31/dKVAd32nqkGSeoBk0kxaOHeGW5XR1K7Kar6N8+MsLe/UF2XaPpwO0r7w1niwn0z0p1knWVedO9tzCrZzmORZ0q/0GWAcD8eFN88ZVe8k7XQAl/5BJZLYAvVj6IC/20l6eVJ3vO8SMy8w9xTPaurCbVfVG/lwcDs7ug9aMNeBne26lztFO09HVtvQPsSAw2SqT520iCGEdGbfswYIQ2/bUAHiKa1owDTH5cEwd6kXeBQ4WrvrJwPIs1DpFCsbD5I8bU8EnbscDjo1rvpNeSR8162Y0XD/A/B1k3DoX5riCI8nGkaFcBoGmZPTMHeM+6OD2CaApNK2+CTJGxJydb457FTtV+WKvs0c0SC1+QX0CA3i46pzKN4vwCGWkEADLNk0gfZ9rB0KxjY9h5e4sScn1nPYk256nEy8PUgrfQjaETdGNTWJElz1ISSkhcuRyso23cmP0k4nySYdjjPQI4cGOKtR1WkIFIlX8smrI5CA8wozOlBBtACWcyQTqe+1FlBpGs1yWGYdg4NoAgm+ICR4+QjJ4vjIsvFVtlFYLFikHRQkoiDPh55tebZhx2pdYSOC+rtzVjUrsPZwMIizDspcTvVamrf7SWsa5GNs5YZiYjXdi2Zc1g/avrKqigXpg4nNGEp7UfoNm2iGz07qBWUjY1U6R9/+5o9oal6rTAfPoARPQO49a81BcC1VYrVaiSH8JtkRdBfCPfBVXLHhE+zVBT2s7xyDQLfcrRNS3XpIZtAERcnTY7RXl9+rS+1BnrIlIE4zagnAHqtq3oM0Zctpxx7kKFtOP3yXPsz8KArv/23ulXbT9mpFeNtZTlMPvHK8u3cD5e8v6MKt1brQtMRbl7NEQj3K7rgJ1kh1RLWBPEoxbIzS1iadcRpKiWLSYK7gmbgKU72X9Oz95bZ6awGfeDU+RVVbDUC8Dmv9AhjLElu1Njr1qI0gF4jhFAmwJYXnZX7iAh5vIOSQ2KIqothwSYTUGBshLh+35u0rHYz6aTstJwj0rQLdzkrIthKXbiwmUYdJMrJ5693sfh5nhZ0f82VmkrNpiDse5dAxK/DaWpLjEnQVHuy2Xv5wPCxfuesP7tUm0LZsq/nihZFe6nGFWPC4j0u+65J0IvcL4u34YAH5V3fKnVzyj1u1+Ov0p4zz0jkx5MOmoFphZSiBH86IUw5QGmkkllRwybQGRWGzhvp4odOG0PcuLnS6nmDIVsbCa4GMjgimmkngoZRrqbzZAjDAJ4VmYJ/SUExlGDDsssCw9QCjrjsshEScAZkH34mZoWYpKkyHocIviwpfDyoEX397ITxSinFOwFoEU4RXyBjKDCccKwE2pEygvYjLIiPWhAy/9rhAKgh5BngxDKBIJStcNNWSKwz5B+NCKxqGi7wsLnJNuKjrbzHUpuNYECWIMNpgKaokncFNojXW3GjMtQqDRl0WGrUmIrwstb5ewIhIcAJpuwZf5qeN1wGMviww+qnMUFwPaHRkFAWHxsGjYV3ly5ATGAFZtMDaSAaPAtNl00AGkteLY2PWw0eXJsy4AcwTTSqkxZ34fvJOk7w1caiWLS8EA48gmFOOCWVaEeVjPQV3JgilSlIuIEcLNA+CGyioAKaI1wPCkuR4cyHQEQaF5wAAxRA/FPMz4RG2mx4UIRRSYYFD8y3SpOs2MQ3AIYCyr8JheTq8uVAAJyGCQo8MM9JwTXmFBSECkOCSGgKRngR6JdJk8YQHILEWHv/F0vR3g3HgkZEc2+hgMKaCkgoHSggGekgYEUQbzgNxaJJ2m3oGILEW4v7FOQnvBmOhIqB7QkoCFENguRyK0OkT0mTqlAQAsRauvnzmeHNhoDSC6KAha5XSTv1LVeHAsGQYE8mYBvrHAydMSJOX28wyAIk1cfPl+ewGY8EjrbiEkK0gd6WijtjCUKIZJRxrKmVokGgy8bPTv52dfnV2+p+z0y/hF52d/uPs9M9nX3/mfj9BcONf7uqfZ6ffnJ3+++z0c3f5uXvlKygCBZB78POz07+73y8DoA2g91cE2rnUwkpqJT6CRoRqwEAwo4TrhF+ooco6MQBIKKlN4EwJUXMAeTQ8Rr/3WKAACQew9GU0r94lRDF7FjKWNLKzHQQr8P9EYlZRaxMpQ+F/SjCI4IyLQCHrOSE3lDxEvAFc+5mKF58nXgmpP4aAK5jdQ+elK4AVQBAWlNsN0oqFRt0mP95FOdr1p+gH6LvOR76bv/89uPB3K3Gji8g7gD9fmbwD/fxjlVxBDzgnkjPNuNGqciTAzRilEHglETb5CfD0nQoAir6P8mWCnd/91Znf/eX2Sp3jd+enc6o9XRdYZmxS9t3Oglp0LqcWNIDRXye1sLzczikKQutJRRUZTWwuZiANAJ4YaJuUrIr/AQu/T7jc/qzjCou41FpwyHE5p6aakjKQXEHkhv8g86JO5kHCbTLwm6i9+7+fdQKEGkDDN1CoCgRlKBBqyqRdXZWVTDUoLAFfBkwaMxG6NaFJ4dq773XzuP0RpY8+Uo/++7t1OZAAtndtHIjkEN0p00AhMGUVf1AAB+ZUg8oLO+samDnR5uQGaPg8AjbmUIq2kbLB55JwBMyCXB84IK3S4HM0UYSZOtnCEefA8owUNpHVJJQv0Ca1fgl5+2g/+qjzqLKVCyP0aKHorDk9Qg3b231vlL4UgmkAjb/mmG4BB4TgLJjA3EC4xqE+b56k/9YR679MGfkvLC+EG6enjricWu5+A81Fc0toVnL4rz+FZ389+/pX8Bac/dJdfOJq+WZJA3524BvH+z9zpf7kitfzBbaDn6KXv0PwKyiAQ9E1rfEvn98B0ujVR/q01R2fPtOiwLQ01YoyojTQLez3h21REmnhpnLsErEkKnAVjDanC9rf/voPNA+Q/SZMD1yBUSohDNES2BMQWT+HuUWAUGnOqMZKSqa5Dg19zUkDSgPEvJYl+XOWfVd/bvOMsaCRJSqGSqmENpiLKgkxAAtljHJllx0Dp5Npc4KBB6x00TUtwK/aGLmJONhtkJCXQ1gSBpyP24h64pYiLdUxdlcXNpAnksD9qU1GL2XADtU1rcKv3gy5kQ4KfD6x8pZEgk0YqVQ972a3QxgjDECleWDWwJrUXusALNa1Er9i++O1QEJXG4R0BOSIGUkxlgTyuEAk5lbiCQ6AYl1L8St3PG4oGFgQbL+9FpjaHVt+t7bd96gZRBGNNfwGz8qwufV4FhC42ZqW41dtctxQLKibkRZEcAOIyGrPloik3YKqCfzZjcCBUDQnc6DuACjWtSC/clvjM55CIzJihnEuIEJzyJsIq9cCDNAEBZAwrbQ+N0o//uPHuBr79Iu6130lF/vi8fXHgLD6i3BBgjOju91ukZTu0zifOzK6SvRr+jaZECEUwMCJwazeZ01BKez2Xk6BwJmn9tny6/5TyGnuP4UuWQ1d88Pl5Ao5CLGzi5OlIWLZ7cx3y0HGs7mfK7NISQV+T0MMwkbbrRcLny3PK87kI+am6vheX+qL5lU6ohY0pBuiId1nxI2eGw3ZYhQcNdUUwqOiBtv9ZxumIjN0aaolvRAt6V0lb7MR4tx//+B50RLDI6DiUy3ZPEcyIXJTHTkI0ZGDq+eTyz67f35UhCjT9CQbqCNqiSc5DNGSw6dBdauc0x6eQz0B1dh0XzLhvlMtGYVoyejqKLhLVCe+5DlVEQ6M95m4ku3Zf5vMXtf/mu2r/wdQSwcIJ773lPEOAABqVwAAUEsBAhQAFAAIAAgAVmAiQ5Q1p+JLHQAARh0AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABWYCJDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACPHQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFZgIkMnvveU8Q4AAGpXAAAMAAAAAAAAAAAAAAAAAO0dAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAGC0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | ||
*ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | *ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು | ||
1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.<br> | 1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.<br> |
೦೮:೨೦, ೪ ಸೆಪ್ಟೆಂಬರ್ ೨೦೧೩ ನಂತೆ ಪರಿಷ್ಕರಣೆ
ಗಣಿತದ ತತ್ವಶಾಸ್ತ್ರ |
ಸಂಪನ್ಮೂಲಗಳ ತಯಾರಿಕೆಗೆ ಬೇಕಾಗುವ ತಾಳೆಪಟ್ಟಿಗೆ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ
<mm>Flash</mm>
ಪಠ್ಯಪುಸ್ತಕ
2.1ಕರ್ನಾಟಕ ಸರಕಾರ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 9 ನೇ ತರಗತಿ
2.2ಎನ್.ಸಿ.ಇ.ಆರ್.ಟಿ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ 8 ನೇ ತರಗತಿ
ಪಠ್ಯಪುಸ್ತಕದ ಲಿಂಕ್ ಗಳನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಲು, ದಯವಿಟ್ಟು ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ: (ಉಪ-ಪುಟವನ್ನು ಸೃಷ್ಟಿಸಲು ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ)
ಮತ್ತಷ್ಟು ಮಾಹಿತಿ
ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು
1.ಇದರಲ್ಲಿ ನೇರ ಮಾರ್ಪಿನ ಬಗ್ಗೆ ಉದಾಹರಣೆ ಸಹಿತ ವಿವರಿಸಿದ್ದಾರೆ.
2.ಇದರಲ್ಲಿ ಸಮಾನುಪಾತ ಮತ್ತು ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧವನ್ನು ಕೊಡಲಾಗಿದೆ.
3.ನೇರ ಅನುಪಾತಕ್ಕೆ ಮತ್ತು ವಿಲೋಮ ಅನುಪಾತಕ್ಕೆ ಅನೇಕ ಉದಾಹರಣೆ ಗಳನ್ನು ನೀಡಿದ್ದಾರೆ.
ಮಾರ್ಪಿನ ವಿಧಗಳು ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು; ನೀಡುತ್ತದೆ.
ಸಂಬಂಧ ಪುಸ್ತಕಗಳು
ಬೋಧನೆಯ ರೂಪರೇಶಗಳು
<mm>Flash</mm>
ಪರಿಕಲ್ಪನೆ #ನೇರ ಮಾರ್ಪು -1
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
ನೇರ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯು ವುದು .ಅನು ಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು .
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಈ ಚಟು ವಟಿಕೆ ಮಾಡು ವ ಮೊದಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ವೃತ್ತದ ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸದ ಪರಿಕಲ್ಪನೆಯನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಮೂಡಿಸುವುದು.
ಚಟುವಟಿಕೆಗಳು #೧
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ನೇರಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ cirdia.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
- ಲ್ಯಾಪ್ ಟಾಪ್,
2.ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
<ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAFZgIkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFGHbniiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAdDUlEQVR42u1dWVQUWZoOd8tdEFkTMpNVdlRURBEU2QSl3FEULRTFhR1EUFBcwRU33AEXrLKqrK27tZeqrp7p7jkzU2emZk4/zZnp0w9zzrzM25wzZ15m/onvhpFmRtwbJApYkPHwn4iMvBFxI/P/4t//K0mSRCaZZJKQzB/BJAH5+pJktZKUkkLSsmUkxcSQlJxMUloaSePGKWP8/ZUxy5eTNH26ck58PEmxsa7XUsfZbCTNnu16j6QkkhITSUpNVY75+ZG0cCFJERFvzsMcnMeHhpI0dSpJISHKfceOVT6DcD7OWbr0pw0Q+uGH9/LHTpksUWKERB9mSFS5VaKOwxI9apPo03aJvr4s0ecdEj05LVG7fPzwFonWrZBoQbRy3oCf8fu/Z8T7HOLrT//z6z+MXIAUF5N0+jRJeXkklZSQtGMHSaWlJEVGkpSfr4zZvp2kLVtIKiwk6eBBZezvfkfS3r2uQFDH7dtHUnk5SXFxyvHMTOU80L17yrGjRxXCsbIy5bycHNfxOL5rF0nV1QpocV/MF8fw/caNJK1f/9MEiAoMZ4Bgf6385sH2P7/9dlDvN3miREU5EvXJTP+rGxL99o5EX1yU6Kn8+W6zRJerJTpRpqertRLdPy7RszMSfXVJOe97mfrkz0XZynXdBYnz/j/ef8r2HzWddPluxFFtLUkdHSRt20bS4cPKfmsrSceOKUyIMfX1CohAYOo9e0h6/FgZ6+X15lrquJ07SbpyRWFqSBkwckuLAjzcIypK2XZ2KuNxP/U8XEcdj+t99BFJVVXKfHDO7t3KMcy7uZmkAwd+mgCZMnkyTRg/Xnf81fXrNF4Vze9IQXMlatgp0WeyVHglg6L3pERt+/hA6KiYTX/oqmD7D5rj6emJVLrXFMe2d49G68afLlfA9d1tBWj18n18vY0liAoEbP948yHb/9/v/pb+6+XvRpfaNWaM8rbGVjQmMJCkoiLlbS8aA2aG2uZ8LDdXkQCDMU9ca6htkHUrVlCrLMoGSkmyCA6G7qi53sxp0955wtkpCih+0SnRtXo+IHj0x65KB1i+u7aHuhrCqetIOH3dUdjvubePKpLpmysSpS8wbZN+ydtbsRE4L0kHZWUptozzMdgSc+aMfiN93CBJCWdaECXbDhdk2+GU+6BwSJDDs+ifetoYOF5e2kqvLhXRi7O59Kfec/R1e6Hb14GE+vKiIlXiI0wgmF6snwBF22X16YREH58Vq1A8Ol40kZo/nEKNOTOpYbkP1SQEUlWMhaqiQqgqOphq4oOoYZkP+x7jjm+f6Pa1oYJBmsDmCQ00mcgEyHugWdMl6pJVm+fnFYbsj2lbd4+lxqxZVC0zf2WYjaoirVQtU9W8EKqJs1DtggBXmh/IjqvjKsNtVBFqZwBqzJ5FraVj+73n+cOKqtfV6L5B70kU5DOXMhcsYvsRlmC2/WDSpEG/z7wQG+UtSaXkqOjXTpuJdOlAleP7L89cpIykhaMHIHDRfnlJorMHjRm0Zdc4Jh3A1GDw6phgPRBkal0xj37b2uTY4titTVnU+WE6NaeG6caz6wEsETYmZVqKJxjOA16y39ySKDzYBIUz2QMC6bO2dgaKyo1bqWhVNq1NTROOj7SEUHriAkbRVhs7dnj9Fka4lmjM3NleFB8aTnvzC9nn1QsX0+nScrY/ZswYWhobTwVLl48OgOxcI1HPiX6khfx2r1vkR1XhVqYq8UChpe9PNLts/9L7hOqTLdRXtt3wvGpZylTa7bLECWCANLJPXl6TqCDNBIZKYNi7dc0Ubw+jqo1FjNHLCzdSrC1UKAkgcUDqmIoNW12kDm8Mjn3Seo72rCkkPy9vBsQfH/SxfUgxfO5pbB3ZABk/TqIzssS4VmcAjj1jmMSAtHAXGKCWtCj64dIFas9dxLaQJL8/fZJJkauFK9y6Rk2Chalgdcl+huoXbKXWvSY4vGfMpJXzk9mbPkF+u6vHd+cW0LK4RNMGGQj5eUv0sBUuWDE4GrNnymoPgGFxi6HrZRujNT6EzsTY6MK8MLoWEUHXIyIdhM8d80LpdKyNWuKDqW6+e2CrjgtiNk596lwGWN5c7zQp3rZpU0yQWP1c3f1ZyUsoLSHJBMhAjHGkfRhJjdqkAKF94UyNSUGM6W+GR9GtsCi6FhlJVyLD6XJUOF2UQXJF3gIcV6Mi6JK8j+86IxXg3AmdJ58XSeej7dSQFNi/RJGBWhVhFapdFyslenFBkYymumV6sd5arXrYItGxPWLPVFVkCHPRGjErQHFDZm4A41JUGF2NdJUW7hKkCgBzO2we3ZKvBeljCBIZSJBqzRumCEGCVBaTyUyAvBVBpYK+zmOuY5snM1Wm1uBtfirWSl0yM0NCdLoBio8zs+mz3HzHtr/xkCgAy4m4EDFQZFUOXq+GDC/uc8BV3WLaJCZABkq1xRKdFAT+mtZOU8Axnw8O2Ba3ZRUKkqJzANLiXy5cox+Pn3Js3TpPVtMgTbrk+x1LsBioXEFUuzCA+zwPZCmye63nMZe/9xxmg9j8A2j29BmO476zvShJfvnge3evhdy+ywer+0lafRP/KF2zjgLm+IxMgGzJkqhtv4HkCBWrNlChrsmMq9oTA6GX23bSX5VX0svtJWx7PTLKffVLBsodWZq0yzaKUJrI0q4u2V/o3Uqb71kA2b46h7asXE37CtZT+bqNFGcPY8fhoj344SaaOXWaW7EQeL42pWdS8epc4Rht/GPf2vXUVLx75AEEQcALleLAHwMHR3LAywQ7YyDAuBUaR91BS+lRQDr1+a6mZ3Oz6WOfHHmbI3/Oko+vkL9PZePcvSZULkguIUgSg6hhJV/dQlYAspA9BSD1W3cwht2ZvYauHKphkW7ELjauWEUtJXt0Hi5RnKNm83YqK/iQchalCMeo8Y9fXrhOPrNmMzDVbSkeeQC5JevkTbv53ip4hWo4NsdRmengZbrsBjju2ObTE79VMhBy6ROfPAYMfH7sn66jp/JxfP/JnDXy+Dx66ptJ96wL+rdNIqLYfETeruoYCzXlT9c9IzID4AL2VH1+BMZAhhcgG1bKtsd2vvSAp6omIUgIDrhkjZj2XshCmdHz6JksIR77Z+jA8E3yFvo2Zx99s2gr2z4JzOCAJoNJGFznoSXF8H43cE97tBAkSIiEuqh9Tni1FkZ7JkBGYAxk+AACl+7NI7KNUaoHxxFZJUGmLS/Y1x84btsTmbSA+sSTEir9W9tt+r7gEP359B227QvONBzfNzeLSZb7IYsMvFxRdDc0mguQOtlgh4sarmptSgqyk03vkAkQF6oskujgZn5eFRIDeUwGN6uRWtUj2w8AhxGjq/QPZSforzdU0z9XnGPbT6Py3ToP9gpUL6GdI4OkM4Jvk9Qt8WM5Y9pnviG/KDauMpnPBIhTtPxyjWyEcwKCdYt9uXlVkBpGkuOpXyazH/pj8N7AdOoOTqeH1nR6ALIpW3zGcXzf3zVUm+ZWaCzf7gmFdytUmOzIqzVBSa8ZZR+kHghDW/c/9A/QKjPEvvV8r1UFx6XbFmfV5U45E9QpAMQIFFow8MgxxqZ8hrdLDJQMBhI4Abg2kKxq8eIk6gtAXycv0eGto595EfOAtyolJo4Z6DFWO/NmwRYZh1Y9A+gcIwLCiAYIComu1AgM86RAliWrZSq8kUUBwKey1Hgq8EqBwVWmfxjiCobe8Ez6U+tl3b4zWO67ARSApIvjFobRLrJHQE2FU3XPj4TG0Q4QuFvh6kVBU0lOPu3IyqPSvLUslpGfsrxfhv/28i36v9/+HRcsoH/t+2JkAwQ9p9B7Sic9iico0XINI52LsQtzqXoCl7P4BY9xeyxvJAGPXq0tox+Ptuv2eVLlvl2+XpAxSG6GR3OlCC8tBbZIdbSFm4aSOMpr22u3FFPH/gralpnD6kGw31qyl47tKGXBQncAwuscg24x//3L3498gJw7JNH+DXqAoABJ69ZFMBCBOESttcx317rgtQtXz7CQFkaq1LPEAvq+uJr+/UEfvVi+1bHfF58vPAcggY0iUreg5vFAfF/k1Vrsx1JotHGR5o88z2ZAlR8kyhij1kGeYKTDCBWpVzzpgZR0kfRAbEIEjofWoSFIJBFInvitZFF6HZBlgJyN0Xvl6pf7UC0nDaWn1TSyPRYgqxZJdIjj2oVXp8KuZyIkBPLAgaAd4hJctapfRs+gXvtqehwmS5+wXCfKYce75e+NzjdStyBFboTP46pa3ITGOAu351aYxWREjwTIqXKJdhfoAdKQOpeqY12Nc3iAEHjjS481fE+Vgc3RbVvlBIocehSapaFsdvxJWB4bg/FCkISKDXcc1wHaHsOPsCf76WpHzslqVvV2kxG13Um0nUpGJUAuVvFjHzz1CqrVVU7c44Flifym1ksPI8mhMr8zIL5KK6ZvNx6mn2ftdtl/A5ZctjVyB3Mj7r5ZOikCLxyKuLTP2JDuzVWzIEVMgLh2J9F2Khl1AEGd+alyfpVghU3PPLcE0oOXQtIbJJIeGa+Bka2TGM/nr6dvVu6kvylrdtl3HvM4NIedL1K1HgmCiry8La7Ld6G/rGbpYyJolm0CxLU7ifP+qAQIEvLqdnCKoQqmUWWETZeQKLI/nnPUK5FqxQOGswT5y/Vu+uPeZpd9nurFkyRGUgRBS+28u20x3EYQ8Nxp87PQsGLOLBMgHmWDrFnGj38gMbF6nmusALXfvMg5XLvaXKtH/srbXMvAMLh7BeBgZJcZ35bzhuw5wrGQIj0cmwT35QLEN1OnZj2wR7NuKTw7RJvlCxUrNtRkRiNCRSJULkgW1H5oqwgHsYJweABSuk6iMk56Sd0if5afpHXv8mIfcKWC3AkICqWHFhgulCsECk/VAkB6g/hxEW0dCVSsc5zqw/oUX12tyI0GxeM3mhl8V04+FS5LZ43cRFWBWHAIIHAm57JcVCeiStH5umoV4SBWEA4PQJB/tStfD5BqTlq72k1EZ39wAoM81arHnilLEIHkEILDWZpkcwHSbVupi4sg7sK3Q1xjIlAZUf3Ii4dsP5hLxw5MoqKba6m0fSlrXVqSP/qrC1H9p5bZ8qoCjchrxgzm1Vo1P5nld2mrCFHSO0gVhMMDEBjovBhIZaQ+FQOltNwuJJxUdpH0gIo1EHCcWFdBPWF5dHxDjQMkVWWtdDd+nZMtkkWnsnZRS8E+uhOZRU0bDrJ8LczjfPouqi5peu3qXUHnMkrYnMv2l9OhXbsdIMHzFe1eSzu2ZTk8WavP1lNj5UzKf7Kf9pxbTCcPTaDje0w1SiUY5jerjrDS3FFrgwAgjbvcc/HeEsY/8twGCF965AoBsr+qna4s20lXU4qpOyKfqVrHN1XpDPbyAydox7Er1Jm8jc5m11C3fRN9Mnc9Ve+5SGV13fQssJw+9y6l2o9uy+pXIbUVnKX2VSfpqWUffT63jG6GlNCuhk9pb+Uz6gmopd6Qaurxa6C+BWUudH9tKvX1SYw8HSATJ0ygDWkrR7eRfkqwZMFAIujP5+iLmu6/I0AKp6ZQxdQN9HJ2h4Nezbqo7Hu1M3o1+4Ky9eqgn886y+ib2Sfpizl19MKnjr6epdCXsw8ycIBeeO1hALlvle0R2zJGj4JXUGtckiZx0Zdq5uvbA3XWmsBwpiGyJ0YZQLzfFSCu4OgKWUVJU/ypxDuaLltW6CWL1g4JzXHbkwVngi7lxB7NNdJ5ALlaZ4LCo9y8MNKxyKaWEdC5xH0b5F1VLFcAnAlMfVMC7JvUj6HOj4eIAALiVRrqoulIWlygj6a3V5jM6FEAgQQ5sJEDkCEw0rkGusPFm+sGQHLdioWoFYo66eG/kuvF6uT0z0JXeBjq2uWoURJgMqMHAQQlthVbBFWEmiUM0C2RBxDW08rfNQ6C9HM9SDKYOtSfFHEGSL1fqlMshOfmzeXXiFj46tW9kGRNHISfj4US3Ma8GS6/yb1jyuq9JjNKrOkbiqrUz+ryadpl1UY8QFBJyEs1qV/mQ9XRIboqQl4mL7oeanOxkD3Li6SrKpERSB5as+iiJY3RfetqYQxEpF7dE2T1Yo43w2I0kfQYaou1cppdB9CxjR/oevcmesCque4EC1mSa3mlo7BKXT7Nua3oqADIkji+mxerymrtkOYEC90N05ew3pSPfepdoDfUOQDpdiQqZrmlbvGBoRBS4EUJi/yM3tW6uT+yxrG+XrouJwlB1LJzvMtv8rhNSe70hFak/QUL58ycRY+b25gkUZdP+6T1rEtb0VEBEGuAbIfs53cyOWzRR5hRZORuLQhfzVIi6oYgcYOgWvXYMt0uwYV61RuYxklWjOW3AYoO1v0mn7abqpVHFkzdbBS4eq163Zx1BuEY68hzQjKgO1KEGeyvDey3BQcMfmHRlKCqUNsvi9XVc5rJodtiTVKAR3Y3MQEiWCCH12oUNRHahg1Y8wNuUV6H9uccNavboIuJIklyDdPftTYH1CqcJyy7tYjLbrVz7rXFsRR+ngQ5uma6rnEDVqIyGdEDAQJDvYWzghTKTnlFU3cFahbq0bVZvarLV1RZ2P3as8VKbkPFGbtPXn//UFCbjnuIbA80ur5tT+DWgnAbWkeF6Bb+RIfF+VEmI/bnxdIukDOMJbtD97BY5RUNq7lqVnAYV83q4nizboXFco11kUdL3LQhR9e04WE/TRtEniu4n3nGOUDOU69YNWFCoO53+LzDc5hf68USlmpzvFjaBXKGsWR3aH8UBMG4bX84a4HA6wP3qLCjIscWQX1G/yB5OwI4RL17EeW/FRbD9V7Vzucv+AkPnvNvcLpcWS/FkxbUcfZi8YjnxeppbNUtkDOMJbtD+6OgcIrr7s2dwVWzEDTEwpw6kMiSRbFFMrgdTgYbJPcNwIGO77w6dID7wjx+E2u4ttHJXltqm73UVKs8urs7aq3RYpMrReDN0sQKUMf90MaXIl32eG4C42CCRLU5RG1+lI7yGdz5PbLyXbtwSDSkzdE9/5eXPKvDO9QelMWqBU+8QOH0KVPYGBHBDuGdC3WMN378uHHCgCRslL7jp6l5x0fvt7v79XqZITjGetO6aVwpgs6EIoP9QfAS4Zogj9Q2pLa367ho3G5UiXlAevDmhbjHmVj+4qNVYVadcX7+sKxeNXpeXTlUKFQHigKFUyZPZmNEhFoR3rkACG88OsiLqhdh06CBdnZyyvsFCNIoUHfNNdblCfPWJcQyz12croXMjRqYZrhwDtrzOJfIsvVBtIAJedPTVx1n1NUd9g/uKeqkqFYP6gKDsRZd7hXoZ1clCvDxPJXFneWc36UhwxBUIw7PD4Mevbyln5s3fcCVIlC1oNPfFGT6PgheLOzX69LkIcgVHA80IOkNcmeVqWxuvYeatcvcuhzDHOojKii1z4wadDTV8zRwaJdz7o/epiHDEFQjDs+Pg9QTLGAp8mjVcqTIEflYjzXWYEXbJFZ1yIuRDA5lMBD2BC3jL+Qpg/dxCD/nSol7WHWtRkG/uKasuuVpANEu52zYePAdGjIMcjXi8P1AqBE5c4CTn7VjPB0ODOcy2fH4YOq1xRospBntUH8GExzKeurZzDEgAscTGRzHE4KFS6/VCdqMYhls0ztkerF0hLfmoza+FGkqnMbN0QKhAVuvLElE6pay2m0CaxOkpMdnvLXEwDUAtrvW+YYLdwIc3MZwr71WkB6853x1w1yb0ASIAWFdPuRo8ZgH1Xa8ikNV3YKufztsnuH65XdsiQ5GR2Np0XJtzm1DP2agyGGqGtQ2o+vDu9YjS7QjSfxcK6iKqLvXthcFPTop0Y48k+lMgPSzqE6vzCjnD/FBgvXStZ0XnQ13JDSiGYIREzuDBUVXSAuBGoYYBiRM3+uoPFavhX3RFRrv1vUQn0GlINcgf01wOGB5Oe1zXas3s3ZNgAwgR+uzDona9nFAsmcMVcpvYG22rzOhlBVBuTv9SJPBIrhxYYx3CKLkKmHezYV6oxwZu6ZqZQJkQIRVlT49z5ciUE8qQ226RXa00gRNEWDAi9oGvSsBgE9C4tl96gykBuI4lbLkaFqnX8kWL4HvbntGxeBQLKTjsQABZS5W6rF5IIEkqY4JZmT01oaLFRnAMOKxstON8HcDBWrjERVH0iGu2yBw4b4xyC2yWmVny8rxnuPlNYkWxZhML8roPbGrjP7jxSsWDPzi9AVdVi5WxgXZAwI9DyCg8o0S3RCkxLNu8Mn+VB0VYsikKrXFWeW3fjSTKmBy2CuitqbOHinYFQAYCEY4a7Ywv//7wVaqCrdyDXLQJ+dko3yNCQqjjF4A5M/PvmKxjp+dv6LLyq3YsJU+mDTJMyWISmiadqdJDJIjq7xkRrTpEhuNCPGTy1HhMgAi6b5s1IPgBQMIAB4Y3DD2ITEwTuSyFVFVpNJ4QjTnz9qVrQkK0wYZFEIn+MdtYpBg0RnEFtD0YCCMPNiE+8ONq13jwyVS3inR3g9N5jIBMsiE2ogvLgq8W68JNd3Ijq1JDBpWYNTEBzHHAVbIEs0N3qrv70q0PMlkLBMgQ+jd+uqyOJioGvCor4CaUzPUwEgAMOysK7u24EnbPvQ3tySy+JlMZQJkGOIkWPm1s9YAJK97bAEozFh205B3FxSoAIQ6hevjPkbz6GmV53vajHOYABnmiDtKdSFN0BbHiEHV2EmDrP7UyGABY4PJscwAmiXULfbjx1KS/VmnddYvGJIiXAaFrErhOiLPlDY6/uubEh0pMRnJBMh7IiQ4XqlVun9Ax++PaVWwIM0cTRIgARQQoO1nIAs+AgT4jOP4HgVNGG+kQjkT1D9ExiHhpkx27zm8vd+szDpp0iRGM2fOpDlz5lBYWBhNnTr1zTPPmuU4js8zZswgi8VCISEhjuMTJkygTZs2UUBAgO5eGK+Oi4iIoMDAQLLZbBQZGUljx46liRMnsvv7+vqy73EO7/4+Pj4ux3FdzAFzycvLY1V8OI7nWLduHU2ZMoXGjRvHPuN+GA8aP3482+K4n58fWa1Wxxznzp3ruMdAnlOdI+aP8c7XUM+dPHky+fv7s9/e+XdW7+Pl5eX4D3JychzPM6IA4lJPckxRvYyM+KEkdCH5eadED1oGHhnPzs5mfw4Yc+nSpbRs2TJatWoVJScn04IFC9hn9U9OSUmhxYsXU1xcHPscHx9PR48epaysLMf4wsJCSkxMpNBQ/QKYuP6GDRvYebguPqelpTHmxDm4Bo6vXLmSgSYhIYF7/4yMDDYmKCiIHY+JiWFz3rx5M5WUlLzpw7xkCeXn57M5ARjYB02bNo1yc3MZ4TuMS09Pp9WrV7NrY46ZmZmOewzkOdU5Ysy2bdsc13B+9jVr1rDnwv0KCgocv/uiRYvYffCiUP8D/D4jUoJoCU3WkPT31SVFxRkOYKCGAxFxBP5i7G83b/zpIPyRy5cvZ4S3FhgJDIQ/UGVQfMafnJqayt7+K1asoNLSUlq/fj0bjz914cKFjHnACOo9wJz403HdLVu2MIYEA2IfY9euXcvOBcPh+iC8ncFoovuD+ex2O2M+MBIkBZ4Bc8LbGeOxj3PA9Hhrq/ecPn06Y2DcF/PEOOwXFxezrTpH3ANSwN3ndJ4jCHNXr+H87Pi98UyYT1FREfuMsdjiPpAs6n+Ae40KgDh3S6nYqkiUFx3iasW3IUgoGN5Qo2B84z5wHAz3M4K58IYXfQ91CWPwZme/iawq4BhvLNQHMJlAjTAkgFlVxVRSpRP2oVa5cx13x/X3nLzvB9Q8YvZsBiDR9UYFQLRer82rJepuVeIoz88pLT3vNiv130ZggHsW4HomA+2LCxJ9c0Wix7KEKkxH04D3+1x4Q0NPNhoDOwI0lPOIjY3VARWSAhJiuH6LwXxOqH6wfdwE7OjzPMBewfok23IkaixRuhfeaVaqGZ+fV1S0hy1K93l4oACuxbESBc01vTYmeQBATDLJBIhJJpkAMcmk90v/D3AkNzm1YnBkAAAAAElFTkSuQmCCUEsHCJQ1p+JLHQAARh0AAFBLAwQUAAgACABWYCJDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAVmAiQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdXNtuG8cZvk6eYsAGQQ/Was4HR0ohJwhqwIkD2C2CJrlYkUtqI3LJ7C5lyYmBpkXT9iI3BYLetCgKNE1RFG2goECv0os+QF9ByJP0n5ldkktStEambMpNxT3NzuH//tM3M+udHx4P+ugoyYt0mO22SIRbKMnaw06a9XZb47K7pVs/fPXFnV4y7CX7eYy6w3wQl7stbkumnd3WvmlTo013q6s6ZovjLtsybF9s6TYlFJOuUWy/hdBxkd7Mhm/Fg6QYxe3kXvsgGcR3hu24dA0flOXo5vb2gwcPorqpaJj3tnu9/ei46LQQdDMrdlvVyU2orvHSA+aKU4zJ9jtv3vHVb6VZUcZZO2khO4Rx+uqLL+w8SLPO8AF6kHbKAxgwk7KFDpK0dwCDUhQGtW1LjUAio6RdpkdJAe/OXLpBl4NRyxWLM/v8BX+G+pPxtFAnPUo7Sb7bwhETinLFmVKKC8qJaqFhniZZWRUmVaPbdXU7R2nywNdrz1yTvIXK4bC/H9sq0ccfI4opRjfsgfgDhYOU/hH29zDzB+oP3B+EL8P969wX5b4M92U4a6GjtEj3+8luqxv3C5BhmnVzwG9yXZQn/cT1p7oxHT65AWMq0odQmGGQqRc63Mf4hv2T8MdxJeyZQZKZVst8HNho3SSAyi/eJn2ikbK6Ua71YptUnDNOuaJRP/ALDVTMyBaacv93fwstslXDnG/RXz9ZgxaCpzDEne3aVnYq80DFgS1bqU+ZDAprMMwgYazeEyTAOKQCNReIGDgoisAcEBGIC7gkGkl7VIgpeMARQxrZcoQhZx1Cww9XrjKJBFRm7yowSkSgIY4EQ8QZFUdgSsgZJhgpZVBCCCTgJds8obYKJhGXcMU04tBHa5OKQEEGL8I1NE8RI4jZl4lCVCJp6yPc2rrUtutQJUUSI0lshWDWYNLenKG8RsyORlbiSrPRuGyIqD3o1KflcDTBAkqDQ5r6Pe+gGm7xhZ1+vJ/0IVTcs0gidBT3rUW4hrrDrEQ1iNTf6+Xx6CBtF/eSsoS3CvRBfBTficvk+A0oXdRtu7LtYVa8nQ/L14b98SArEGoP+3jS52GfzJzTSa/hgs084LMPxMwDOXOulrY7hCdoXCTQ/jAv6uJxp3Pblpi6BpDk3ax/citP4sPRMG0OY2fbRZ2dZNzup500zn4CympbsXJBM0GIT4OQELLuyTDv3DspQIXR8U+TfAiyVSwyCryzYYJrxSi8d+IfUc0jaYQUEGUYIZQI6Fw7ttZHcMQN05jAO4T51k7OeaaqxpOjCUjxcTIdby+3xj1zcbu4NexPbzkRvBaPynHuUgjwj7kd117W6ydOTZxxQ3xuH+4Pj+9VDtvXdf9kBFfY92C/50SPbLyDx+53f/LUdmrVc1vd5Dkx1JVwx31/dKVAd32nqkGSeoBk0kxaOHeGW5XR1K7Kar6N8+MsLe/UF2XaPpwO0r7w1niwn0z0p1knWVedO9tzCrZzmORZ0q/0GWAcD8eFN88ZVe8k7XQAl/5BJZLYAvVj6IC/20l6eVJ3vO8SMy8w9xTPaurCbVfVG/lwcDs7ug9aMNeBne26lztFO09HVtvQPsSAw2SqT520iCGEdGbfswYIQ2/bUAHiKa1owDTH5cEwd6kXeBQ4WrvrJwPIs1DpFCsbD5I8bU8EnbscDjo1rvpNeSR8162Y0XD/A/B1k3DoX5riCI8nGkaFcBoGmZPTMHeM+6OD2CaApNK2+CTJGxJydb457FTtV+WKvs0c0SC1+QX0CA3i46pzKN4vwCGWkEADLNk0gfZ9rB0KxjY9h5e4sScn1nPYk256nEy8PUgrfQjaETdGNTWJElz1ISSkhcuRyso23cmP0k4nySYdjjPQI4cGOKtR1WkIFIlX8smrI5CA8wozOlBBtACWcyQTqe+1FlBpGs1yWGYdg4NoAgm+ICR4+QjJ4vjIsvFVtlFYLFikHRQkoiDPh55tebZhx2pdYSOC+rtzVjUrsPZwMIizDspcTvVamrf7SWsa5GNs5YZiYjXdi2Zc1g/avrKqigXpg4nNGEp7UfoNm2iGz07qBWUjY1U6R9/+5o9oal6rTAfPoARPQO49a81BcC1VYrVaiSH8JtkRdBfCPfBVXLHhE+zVBT2s7xyDQLfcrRNS3XpIZtAERcnTY7RXl9+rS+1BnrIlIE4zagnAHqtq3oM0Zctpxx7kKFtOP3yXPsz8KArv/23ulXbT9mpFeNtZTlMPvHK8u3cD5e8v6MKt1brQtMRbl7NEQj3K7rgJ1kh1RLWBPEoxbIzS1iadcRpKiWLSYK7gmbgKU72X9Oz95bZ6awGfeDU+RVVbDUC8Dmv9AhjLElu1Njr1qI0gF4jhFAmwJYXnZX7iAh5vIOSQ2KIqothwSYTUGBshLh+35u0rHYz6aTstJwj0rQLdzkrIthKXbiwmUYdJMrJ5693sfh5nhZ0f82VmkrNpiDse5dAxK/DaWpLjEnQVHuy2Xv5wPCxfuesP7tUm0LZsq/nihZFe6nGFWPC4j0u+65J0IvcL4u34YAH5V3fKnVzyj1u1+Ov0p4zz0jkx5MOmoFphZSiBH86IUw5QGmkkllRwybQGRWGzhvp4odOG0PcuLnS6nmDIVsbCa4GMjgimmkngoZRrqbzZAjDAJ4VmYJ/SUExlGDDsssCw9QCjrjsshEScAZkH34mZoWYpKkyHocIviwpfDyoEX397ITxSinFOwFoEU4RXyBjKDCccKwE2pEygvYjLIiPWhAy/9rhAKgh5BngxDKBIJStcNNWSKwz5B+NCKxqGi7wsLnJNuKjrbzHUpuNYECWIMNpgKaokncFNojXW3GjMtQqDRl0WGrUmIrwstb5ewIhIcAJpuwZf5qeN1wGMviww+qnMUFwPaHRkFAWHxsGjYV3ly5ATGAFZtMDaSAaPAtNl00AGkteLY2PWw0eXJsy4AcwTTSqkxZ34fvJOk7w1caiWLS8EA48gmFOOCWVaEeVjPQV3JgilSlIuIEcLNA+CGyioAKaI1wPCkuR4cyHQEQaF5wAAxRA/FPMz4RG2mx4UIRRSYYFD8y3SpOs2MQ3AIYCyr8JheTq8uVAAJyGCQo8MM9JwTXmFBSECkOCSGgKRngR6JdJk8YQHILEWHv/F0vR3g3HgkZEc2+hgMKaCkgoHSggGekgYEUQbzgNxaJJ2m3oGILEW4v7FOQnvBmOhIqB7QkoCFENguRyK0OkT0mTqlAQAsRauvnzmeHNhoDSC6KAha5XSTv1LVeHAsGQYE8mYBvrHAydMSJOX28wyAIk1cfPl+ewGY8EjrbiEkK0gd6WijtjCUKIZJRxrKmVokGgy8bPTv52dfnV2+p+z0y/hF52d/uPs9M9nX3/mfj9BcONf7uqfZ6ffnJ3+++z0c3f5uXvlKygCBZB78POz07+73y8DoA2g91cE2rnUwkpqJT6CRoRqwEAwo4TrhF+ooco6MQBIKKlN4EwJUXMAeTQ8Rr/3WKAACQew9GU0r94lRDF7FjKWNLKzHQQr8P9EYlZRaxMpQ+F/SjCI4IyLQCHrOSE3lDxEvAFc+5mKF58nXgmpP4aAK5jdQ+elK4AVQBAWlNsN0oqFRt0mP95FOdr1p+gH6LvOR76bv/89uPB3K3Gji8g7gD9fmbwD/fxjlVxBDzgnkjPNuNGqciTAzRilEHglETb5CfD0nQoAir6P8mWCnd/91Znf/eX2Sp3jd+enc6o9XRdYZmxS9t3Oglp0LqcWNIDRXye1sLzczikKQutJRRUZTWwuZiANAJ4YaJuUrIr/AQu/T7jc/qzjCou41FpwyHE5p6aakjKQXEHkhv8g86JO5kHCbTLwm6i9+7+fdQKEGkDDN1CoCgRlKBBqyqRdXZWVTDUoLAFfBkwaMxG6NaFJ4dq773XzuP0RpY8+Uo/++7t1OZAAtndtHIjkEN0p00AhMGUVf1AAB+ZUg8oLO+samDnR5uQGaPg8AjbmUIq2kbLB55JwBMyCXB84IK3S4HM0UYSZOtnCEefA8owUNpHVJJQv0Ca1fgl5+2g/+qjzqLKVCyP0aKHorDk9Qg3b231vlL4UgmkAjb/mmG4BB4TgLJjA3EC4xqE+b56k/9YR679MGfkvLC+EG6enjricWu5+A81Fc0toVnL4rz+FZ389+/pX8Bac/dJdfOJq+WZJA3524BvH+z9zpf7kitfzBbaDn6KXv0PwKyiAQ9E1rfEvn98B0ujVR/q01R2fPtOiwLQ01YoyojTQLez3h21REmnhpnLsErEkKnAVjDanC9rf/voPNA+Q/SZMD1yBUSohDNES2BMQWT+HuUWAUGnOqMZKSqa5Dg19zUkDSgPEvJYl+XOWfVd/bvOMsaCRJSqGSqmENpiLKgkxAAtljHJllx0Dp5Npc4KBB6x00TUtwK/aGLmJONhtkJCXQ1gSBpyP24h64pYiLdUxdlcXNpAnksD9qU1GL2XADtU1rcKv3gy5kQ4KfD6x8pZEgk0YqVQ972a3QxgjDECleWDWwJrUXusALNa1Er9i++O1QEJXG4R0BOSIGUkxlgTyuEAk5lbiCQ6AYl1L8St3PG4oGFgQbL+9FpjaHVt+t7bd96gZRBGNNfwGz8qwufV4FhC42ZqW41dtctxQLKibkRZEcAOIyGrPloik3YKqCfzZjcCBUDQnc6DuACjWtSC/clvjM55CIzJihnEuIEJzyJsIq9cCDNAEBZAwrbQ+N0o//uPHuBr79Iu6130lF/vi8fXHgLD6i3BBgjOju91ukZTu0zifOzK6SvRr+jaZECEUwMCJwazeZ01BKez2Xk6BwJmn9tny6/5TyGnuP4UuWQ1d88Pl5Ao5CLGzi5OlIWLZ7cx3y0HGs7mfK7NISQV+T0MMwkbbrRcLny3PK87kI+am6vheX+qL5lU6ohY0pBuiId1nxI2eGw3ZYhQcNdUUwqOiBtv9ZxumIjN0aaolvRAt6V0lb7MR4tx//+B50RLDI6DiUy3ZPEcyIXJTHTkI0ZGDq+eTyz67f35UhCjT9CQbqCNqiSc5DNGSw6dBdauc0x6eQz0B1dh0XzLhvlMtGYVoyejqKLhLVCe+5DlVEQ6M95m4ku3Zf5vMXtf/mu2r/wdQSwcIJ773lPEOAABqVwAAUEsBAhQAFAAIAAgAVmAiQ5Q1p+JLHQAARh0AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABWYCJDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACPHQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFZgIkMnvveU8Q4AAGpXAAAMAAAAAAAAAAAAAAAAAO0dAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAGC0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
1.ಬೇರೆ ಬೇರೆ ತ್ರಿಜ್ಯವಿರು ವ ವೃತ್ತವನ್ನು ರಚಿಸಿ ಪರಿಧಿಯ ಅಳತೆಯನ್ನು ಸೂತ್ರದ ಸಹಾಯದಿಂದ ಕಂಡು ಹಿಡಿಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸುವುದು.
2. ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಸಂಬಂಧವನ್ನು ನಿರೂಪಿಸಲು ಹೇಳು ವುದು
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಪರಿಧಿಗೂ ಮತ್ತು ವ್ಯಾಸಕ್ಕಿರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳು ವುದು
- ಪ್ರಶ್ನೆಗಳು
ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೇಗಳು
ಚಟುವಟಿಕೆಗಳು #2
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ನೇರ ಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ dirvar.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
1.ಲ್ಯಾಪ್ ಟಾಪ್
2.ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
ಒಂದು ಗ್ರಾಫ್ ಹಾಳೆಯ ಮೇಲೆ ಅಗಲದ ಅಳತೆಯನ್ನು ಸ್ಥಿರವಾಗಿಟ್ಟುಕೊಂಡು ಬೇರೆ ಬೇರೆ ಉದ್ದದ ಅಳತೆಯ ಆಯತಾಕಾರವನ್ನು ರಚಿಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನೀಡು ವುದು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಯತಾಕಾರದ ಒಳಗೆ ಇರುವ ಸಣ್ಣ ಚೌಕಗಳನ್ನು ಏಣಿಸಲು ಹೇಳುವುದು ಚೌಕಗಳ ಸಂಖ್ಯೆಗೂ ಮತ್ತು ಉದ್ದಕ್ಕೂ ಇರುವ ಸಂಬಂಧವನ್ನು ನಿರೂ ಪಿಸಲು ಹೇಳುವುದು .
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಚಟು ವ ಟಿಕೆಯ ಪ್ರತಿ ಸಂದರ್ಭದಲ್ಲಿ ಉದ್ದಕ್ಕೂ ಮತ್ತು ವಿಸ್ತೀರ್ಣಕ್ಕೂ ಇರು ವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು ..
- ಪ್ರಶ್ನೆಗಳು
ನೇರ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಪರಿಹಾರಗಳು.
ಪರಿಕಲ್ಪನೆ #ವಿಲೋಮ ಮಾರ್ಪು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
ವಿಲೋಮ ಅನುಪಾತ ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯುವುದು. ಅನುಪಾತೀಯ ಸ್ಥಿರಾಂಕ ವನ್ನು ಸಾಂಕೇತಿಕ ರೂಪದಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸುವುದು .
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಪೂರ್ಣಕೋನ 360 ಡಿಗ್ರಿ, ತ್ರಿಜ್ಯಾಂತರ ಖಂಡಗಳ ಸಂಖ್ಯೆ ಹೆಚ್ಚಾದಂತೆ ಅವುಗಳ ನಡುವಿನ ಕೋನ ಕಡಿಮೆಯಾಗುತ್ತದೆ.
ಚಟುವಟಿಕೆಗಳು #೨
- ಅಂದಾಜು ಸಮಯ
20 ನಿಮಿಷಗಳು
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
ವಿಲೋಮ ಮಾರ್ಪುವಿನ ಜಿಯೋಜಿಬ್ರಾ ಕಡತ chakra.ggb
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
ಲ್ಯಾಪ್ ಟಾಪ್,
ಎಲ್.ಸಿ.ಡಿ ಪ್ರೊಜೆಕ್ಟರ್
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
<ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAFZgIkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFGHbniiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAdDUlEQVR42u1dWVQUWZoOd8tdEFkTMpNVdlRURBEU2QSl3FEULRTFhR1EUFBcwRU33AEXrLKqrK27tZeqrp7p7jkzU2emZk4/zZnp0w9zzrzM25wzZ15m/onvhpFmRtwbJApYkPHwn4iMvBFxI/P/4t//K0mSRCaZZJKQzB/BJAH5+pJktZKUkkLSsmUkxcSQlJxMUloaSePGKWP8/ZUxy5eTNH26ck58PEmxsa7XUsfZbCTNnu16j6QkkhITSUpNVY75+ZG0cCFJERFvzsMcnMeHhpI0dSpJISHKfceOVT6DcD7OWbr0pw0Q+uGH9/LHTpksUWKERB9mSFS5VaKOwxI9apPo03aJvr4s0ecdEj05LVG7fPzwFonWrZBoQbRy3oCf8fu/Z8T7HOLrT//z6z+MXIAUF5N0+jRJeXkklZSQtGMHSaWlJEVGkpSfr4zZvp2kLVtIKiwk6eBBZezvfkfS3r2uQFDH7dtHUnk5SXFxyvHMTOU80L17yrGjRxXCsbIy5bycHNfxOL5rF0nV1QpocV/MF8fw/caNJK1f/9MEiAoMZ4Bgf6385sH2P7/9dlDvN3miREU5EvXJTP+rGxL99o5EX1yU6Kn8+W6zRJerJTpRpqertRLdPy7RszMSfXVJOe97mfrkz0XZynXdBYnz/j/ef8r2HzWddPluxFFtLUkdHSRt20bS4cPKfmsrSceOKUyIMfX1CohAYOo9e0h6/FgZ6+X15lrquJ07SbpyRWFqSBkwckuLAjzcIypK2XZ2KuNxP/U8XEcdj+t99BFJVVXKfHDO7t3KMcy7uZmkAwd+mgCZMnkyTRg/Xnf81fXrNF4Vze9IQXMlatgp0WeyVHglg6L3pERt+/hA6KiYTX/oqmD7D5rj6emJVLrXFMe2d49G68afLlfA9d1tBWj18n18vY0liAoEbP948yHb/9/v/pb+6+XvRpfaNWaM8rbGVjQmMJCkoiLlbS8aA2aG2uZ8LDdXkQCDMU9ca6htkHUrVlCrLMoGSkmyCA6G7qi53sxp0955wtkpCih+0SnRtXo+IHj0x65KB1i+u7aHuhrCqetIOH3dUdjvubePKpLpmysSpS8wbZN+ydtbsRE4L0kHZWUptozzMdgSc+aMfiN93CBJCWdaECXbDhdk2+GU+6BwSJDDs+ifetoYOF5e2kqvLhXRi7O59Kfec/R1e6Hb14GE+vKiIlXiI0wgmF6snwBF22X16YREH58Vq1A8Ol40kZo/nEKNOTOpYbkP1SQEUlWMhaqiQqgqOphq4oOoYZkP+x7jjm+f6Pa1oYJBmsDmCQ00mcgEyHugWdMl6pJVm+fnFYbsj2lbd4+lxqxZVC0zf2WYjaoirVQtU9W8EKqJs1DtggBXmh/IjqvjKsNtVBFqZwBqzJ5FraVj+73n+cOKqtfV6L5B70kU5DOXMhcsYvsRlmC2/WDSpEG/z7wQG+UtSaXkqOjXTpuJdOlAleP7L89cpIykhaMHIHDRfnlJorMHjRm0Zdc4Jh3A1GDw6phgPRBkal0xj37b2uTY4titTVnU+WE6NaeG6caz6wEsETYmZVqKJxjOA16y39ySKDzYBIUz2QMC6bO2dgaKyo1bqWhVNq1NTROOj7SEUHriAkbRVhs7dnj9Fka4lmjM3NleFB8aTnvzC9nn1QsX0+nScrY/ZswYWhobTwVLl48OgOxcI1HPiX6khfx2r1vkR1XhVqYq8UChpe9PNLts/9L7hOqTLdRXtt3wvGpZylTa7bLECWCANLJPXl6TqCDNBIZKYNi7dc0Ubw+jqo1FjNHLCzdSrC1UKAkgcUDqmIoNW12kDm8Mjn3Seo72rCkkPy9vBsQfH/SxfUgxfO5pbB3ZABk/TqIzssS4VmcAjj1jmMSAtHAXGKCWtCj64dIFas9dxLaQJL8/fZJJkauFK9y6Rk2Chalgdcl+huoXbKXWvSY4vGfMpJXzk9mbPkF+u6vHd+cW0LK4RNMGGQj5eUv0sBUuWDE4GrNnymoPgGFxi6HrZRujNT6EzsTY6MK8MLoWEUHXIyIdhM8d80LpdKyNWuKDqW6+e2CrjgtiNk596lwGWN5c7zQp3rZpU0yQWP1c3f1ZyUsoLSHJBMhAjHGkfRhJjdqkAKF94UyNSUGM6W+GR9GtsCi6FhlJVyLD6XJUOF2UQXJF3gIcV6Mi6JK8j+86IxXg3AmdJ58XSeej7dSQFNi/RJGBWhVhFapdFyslenFBkYymumV6sd5arXrYItGxPWLPVFVkCHPRGjErQHFDZm4A41JUGF2NdJUW7hKkCgBzO2we3ZKvBeljCBIZSJBqzRumCEGCVBaTyUyAvBVBpYK+zmOuY5snM1Wm1uBtfirWSl0yM0NCdLoBio8zs+mz3HzHtr/xkCgAy4m4EDFQZFUOXq+GDC/uc8BV3WLaJCZABkq1xRKdFAT+mtZOU8Axnw8O2Ba3ZRUKkqJzANLiXy5cox+Pn3Js3TpPVtMgTbrk+x1LsBioXEFUuzCA+zwPZCmye63nMZe/9xxmg9j8A2j29BmO476zvShJfvnge3evhdy+ywer+0lafRP/KF2zjgLm+IxMgGzJkqhtv4HkCBWrNlChrsmMq9oTA6GX23bSX5VX0svtJWx7PTLKffVLBsodWZq0yzaKUJrI0q4u2V/o3Uqb71kA2b46h7asXE37CtZT+bqNFGcPY8fhoj344SaaOXWaW7EQeL42pWdS8epc4Rht/GPf2vXUVLx75AEEQcALleLAHwMHR3LAywQ7YyDAuBUaR91BS+lRQDr1+a6mZ3Oz6WOfHHmbI3/Oko+vkL9PZePcvSZULkguIUgSg6hhJV/dQlYAspA9BSD1W3cwht2ZvYauHKphkW7ELjauWEUtJXt0Hi5RnKNm83YqK/iQchalCMeo8Y9fXrhOPrNmMzDVbSkeeQC5JevkTbv53ip4hWo4NsdRmengZbrsBjju2ObTE79VMhBy6ROfPAYMfH7sn66jp/JxfP/JnDXy+Dx66ptJ96wL+rdNIqLYfETeruoYCzXlT9c9IzID4AL2VH1+BMZAhhcgG1bKtsd2vvSAp6omIUgIDrhkjZj2XshCmdHz6JksIR77Z+jA8E3yFvo2Zx99s2gr2z4JzOCAJoNJGFznoSXF8H43cE97tBAkSIiEuqh9Tni1FkZ7JkBGYAxk+AACl+7NI7KNUaoHxxFZJUGmLS/Y1x84btsTmbSA+sSTEir9W9tt+r7gEP359B227QvONBzfNzeLSZb7IYsMvFxRdDc0mguQOtlgh4sarmptSgqyk03vkAkQF6oskujgZn5eFRIDeUwGN6uRWtUj2w8AhxGjq/QPZSforzdU0z9XnGPbT6Py3ToP9gpUL6GdI4OkM4Jvk9Qt8WM5Y9pnviG/KDauMpnPBIhTtPxyjWyEcwKCdYt9uXlVkBpGkuOpXyazH/pj8N7AdOoOTqeH1nR6ALIpW3zGcXzf3zVUm+ZWaCzf7gmFdytUmOzIqzVBSa8ZZR+kHghDW/c/9A/QKjPEvvV8r1UFx6XbFmfV5U45E9QpAMQIFFow8MgxxqZ8hrdLDJQMBhI4Abg2kKxq8eIk6gtAXycv0eGto595EfOAtyolJo4Z6DFWO/NmwRYZh1Y9A+gcIwLCiAYIComu1AgM86RAliWrZSq8kUUBwKey1Hgq8EqBwVWmfxjiCobe8Ez6U+tl3b4zWO67ARSApIvjFobRLrJHQE2FU3XPj4TG0Q4QuFvh6kVBU0lOPu3IyqPSvLUslpGfsrxfhv/28i36v9/+HRcsoH/t+2JkAwQ9p9B7Sic9iico0XINI52LsQtzqXoCl7P4BY9xeyxvJAGPXq0tox+Ptuv2eVLlvl2+XpAxSG6GR3OlCC8tBbZIdbSFm4aSOMpr22u3FFPH/gralpnD6kGw31qyl47tKGXBQncAwuscg24x//3L3498gJw7JNH+DXqAoABJ69ZFMBCBOESttcx317rgtQtXz7CQFkaq1LPEAvq+uJr+/UEfvVi+1bHfF58vPAcggY0iUreg5vFAfF/k1Vrsx1JotHGR5o88z2ZAlR8kyhij1kGeYKTDCBWpVzzpgZR0kfRAbEIEjofWoSFIJBFInvitZFF6HZBlgJyN0Xvl6pf7UC0nDaWn1TSyPRYgqxZJdIjj2oVXp8KuZyIkBPLAgaAd4hJctapfRs+gXvtqehwmS5+wXCfKYce75e+NzjdStyBFboTP46pa3ITGOAu351aYxWREjwTIqXKJdhfoAdKQOpeqY12Nc3iAEHjjS481fE+Vgc3RbVvlBIocehSapaFsdvxJWB4bg/FCkISKDXcc1wHaHsOPsCf76WpHzslqVvV2kxG13Um0nUpGJUAuVvFjHzz1CqrVVU7c44Flifym1ksPI8mhMr8zIL5KK6ZvNx6mn2ftdtl/A5ZctjVyB3Mj7r5ZOikCLxyKuLTP2JDuzVWzIEVMgLh2J9F2Khl1AEGd+alyfpVghU3PPLcE0oOXQtIbJJIeGa+Bka2TGM/nr6dvVu6kvylrdtl3HvM4NIedL1K1HgmCiry8La7Ld6G/rGbpYyJolm0CxLU7ifP+qAQIEvLqdnCKoQqmUWWETZeQKLI/nnPUK5FqxQOGswT5y/Vu+uPeZpd9nurFkyRGUgRBS+28u20x3EYQ8Nxp87PQsGLOLBMgHmWDrFnGj38gMbF6nmusALXfvMg5XLvaXKtH/srbXMvAMLh7BeBgZJcZ35bzhuw5wrGQIj0cmwT35QLEN1OnZj2wR7NuKTw7RJvlCxUrNtRkRiNCRSJULkgW1H5oqwgHsYJweABSuk6iMk56Sd0if5afpHXv8mIfcKWC3AkICqWHFhgulCsECk/VAkB6g/hxEW0dCVSsc5zqw/oUX12tyI0GxeM3mhl8V04+FS5LZ43cRFWBWHAIIHAm57JcVCeiStH5umoV4SBWEA4PQJB/tStfD5BqTlq72k1EZ39wAoM81arHnilLEIHkEILDWZpkcwHSbVupi4sg7sK3Q1xjIlAZUf3Ii4dsP5hLxw5MoqKba6m0fSlrXVqSP/qrC1H9p5bZ8qoCjchrxgzm1Vo1P5nld2mrCFHSO0gVhMMDEBjovBhIZaQ+FQOltNwuJJxUdpH0gIo1EHCcWFdBPWF5dHxDjQMkVWWtdDd+nZMtkkWnsnZRS8E+uhOZRU0bDrJ8LczjfPouqi5peu3qXUHnMkrYnMv2l9OhXbsdIMHzFe1eSzu2ZTk8WavP1lNj5UzKf7Kf9pxbTCcPTaDje0w1SiUY5jerjrDS3FFrgwAgjbvcc/HeEsY/8twGCF965AoBsr+qna4s20lXU4qpOyKfqVrHN1XpDPbyAydox7Er1Jm8jc5m11C3fRN9Mnc9Ve+5SGV13fQssJw+9y6l2o9uy+pXIbUVnKX2VSfpqWUffT63jG6GlNCuhk9pb+Uz6gmopd6Qaurxa6C+BWUudH9tKvX1SYw8HSATJ0ygDWkrR7eRfkqwZMFAIujP5+iLmu6/I0AKp6ZQxdQN9HJ2h4Nezbqo7Hu1M3o1+4Ky9eqgn886y+ib2Sfpizl19MKnjr6epdCXsw8ycIBeeO1hALlvle0R2zJGj4JXUGtckiZx0Zdq5uvbA3XWmsBwpiGyJ0YZQLzfFSCu4OgKWUVJU/ypxDuaLltW6CWL1g4JzXHbkwVngi7lxB7NNdJ5ALlaZ4LCo9y8MNKxyKaWEdC5xH0b5F1VLFcAnAlMfVMC7JvUj6HOj4eIAALiVRrqoulIWlygj6a3V5jM6FEAgQQ5sJEDkCEw0rkGusPFm+sGQHLdioWoFYo66eG/kuvF6uT0z0JXeBjq2uWoURJgMqMHAQQlthVbBFWEmiUM0C2RBxDW08rfNQ6C9HM9SDKYOtSfFHEGSL1fqlMshOfmzeXXiFj46tW9kGRNHISfj4US3Ma8GS6/yb1jyuq9JjNKrOkbiqrUz+ryadpl1UY8QFBJyEs1qV/mQ9XRIboqQl4mL7oeanOxkD3Li6SrKpERSB5as+iiJY3RfetqYQxEpF7dE2T1Yo43w2I0kfQYaou1cppdB9CxjR/oevcmesCque4EC1mSa3mlo7BKXT7Nua3oqADIkji+mxerymrtkOYEC90N05ew3pSPfepdoDfUOQDpdiQqZrmlbvGBoRBS4EUJi/yM3tW6uT+yxrG+XrouJwlB1LJzvMtv8rhNSe70hFak/QUL58ycRY+b25gkUZdP+6T1rEtb0VEBEGuAbIfs53cyOWzRR5hRZORuLQhfzVIi6oYgcYOgWvXYMt0uwYV61RuYxklWjOW3AYoO1v0mn7abqpVHFkzdbBS4eq163Zx1BuEY68hzQjKgO1KEGeyvDey3BQcMfmHRlKCqUNsvi9XVc5rJodtiTVKAR3Y3MQEiWCCH12oUNRHahg1Y8wNuUV6H9uccNavboIuJIklyDdPftTYH1CqcJyy7tYjLbrVz7rXFsRR+ngQ5uma6rnEDVqIyGdEDAQJDvYWzghTKTnlFU3cFahbq0bVZvarLV1RZ2P3as8VKbkPFGbtPXn//UFCbjnuIbA80ur5tT+DWgnAbWkeF6Bb+RIfF+VEmI/bnxdIukDOMJbtD97BY5RUNq7lqVnAYV83q4nizboXFco11kUdL3LQhR9e04WE/TRtEniu4n3nGOUDOU69YNWFCoO53+LzDc5hf68USlmpzvFjaBXKGsWR3aH8UBMG4bX84a4HA6wP3qLCjIscWQX1G/yB5OwI4RL17EeW/FRbD9V7Vzucv+AkPnvNvcLpcWS/FkxbUcfZi8YjnxeppbNUtkDOMJbtD+6OgcIrr7s2dwVWzEDTEwpw6kMiSRbFFMrgdTgYbJPcNwIGO77w6dID7wjx+E2u4ttHJXltqm73UVKs8urs7aq3RYpMrReDN0sQKUMf90MaXIl32eG4C42CCRLU5RG1+lI7yGdz5PbLyXbtwSDSkzdE9/5eXPKvDO9QelMWqBU+8QOH0KVPYGBHBDuGdC3WMN378uHHCgCRslL7jp6l5x0fvt7v79XqZITjGetO6aVwpgs6EIoP9QfAS4Zogj9Q2pLa367ho3G5UiXlAevDmhbjHmVj+4qNVYVadcX7+sKxeNXpeXTlUKFQHigKFUyZPZmNEhFoR3rkACG88OsiLqhdh06CBdnZyyvsFCNIoUHfNNdblCfPWJcQyz12croXMjRqYZrhwDtrzOJfIsvVBtIAJedPTVx1n1NUd9g/uKeqkqFYP6gKDsRZd7hXoZ1clCvDxPJXFneWc36UhwxBUIw7PD4Mevbyln5s3fcCVIlC1oNPfFGT6PgheLOzX69LkIcgVHA80IOkNcmeVqWxuvYeatcvcuhzDHOojKii1z4wadDTV8zRwaJdz7o/epiHDEFQjDs+Pg9QTLGAp8mjVcqTIEflYjzXWYEXbJFZ1yIuRDA5lMBD2BC3jL+Qpg/dxCD/nSol7WHWtRkG/uKasuuVpANEu52zYePAdGjIMcjXi8P1AqBE5c4CTn7VjPB0ODOcy2fH4YOq1xRospBntUH8GExzKeurZzDEgAscTGRzHE4KFS6/VCdqMYhls0ztkerF0hLfmoza+FGkqnMbN0QKhAVuvLElE6pay2m0CaxOkpMdnvLXEwDUAtrvW+YYLdwIc3MZwr71WkB6853x1w1yb0ASIAWFdPuRo8ZgH1Xa8ikNV3YKufztsnuH65XdsiQ5GR2Np0XJtzm1DP2agyGGqGtQ2o+vDu9YjS7QjSfxcK6iKqLvXthcFPTop0Y48k+lMgPSzqE6vzCjnD/FBgvXStZ0XnQ13JDSiGYIREzuDBUVXSAuBGoYYBiRM3+uoPFavhX3RFRrv1vUQn0GlINcgf01wOGB5Oe1zXas3s3ZNgAwgR+uzDona9nFAsmcMVcpvYG22rzOhlBVBuTv9SJPBIrhxYYx3CKLkKmHezYV6oxwZu6ZqZQJkQIRVlT49z5ciUE8qQ226RXa00gRNEWDAi9oGvSsBgE9C4tl96gykBuI4lbLkaFqnX8kWL4HvbntGxeBQLKTjsQABZS5W6rF5IIEkqY4JZmT01oaLFRnAMOKxstON8HcDBWrjERVH0iGu2yBw4b4xyC2yWmVny8rxnuPlNYkWxZhML8roPbGrjP7jxSsWDPzi9AVdVi5WxgXZAwI9DyCg8o0S3RCkxLNu8Mn+VB0VYsikKrXFWeW3fjSTKmBy2CuitqbOHinYFQAYCEY4a7Ywv//7wVaqCrdyDXLQJ+dko3yNCQqjjF4A5M/PvmKxjp+dv6LLyq3YsJU+mDTJMyWISmiadqdJDJIjq7xkRrTpEhuNCPGTy1HhMgAi6b5s1IPgBQMIAB4Y3DD2ITEwTuSyFVFVpNJ4QjTnz9qVrQkK0wYZFEIn+MdtYpBg0RnEFtD0YCCMPNiE+8ONq13jwyVS3inR3g9N5jIBMsiE2ogvLgq8W68JNd3Ijq1JDBpWYNTEBzHHAVbIEs0N3qrv70q0PMlkLBMgQ+jd+uqyOJioGvCor4CaUzPUwEgAMOysK7u24EnbPvQ3tySy+JlMZQJkGOIkWPm1s9YAJK97bAEozFh205B3FxSoAIQ6hevjPkbz6GmV53vajHOYABnmiDtKdSFN0BbHiEHV2EmDrP7UyGABY4PJscwAmiXULfbjx1KS/VmnddYvGJIiXAaFrErhOiLPlDY6/uubEh0pMRnJBMh7IiQ4XqlVun9Ax++PaVWwIM0cTRIgARQQoO1nIAs+AgT4jOP4HgVNGG+kQjkT1D9ExiHhpkx27zm8vd+szDpp0iRGM2fOpDlz5lBYWBhNnTr1zTPPmuU4js8zZswgi8VCISEhjuMTJkygTZs2UUBAgO5eGK+Oi4iIoMDAQLLZbBQZGUljx46liRMnsvv7+vqy73EO7/4+Pj4ux3FdzAFzycvLY1V8OI7nWLduHU2ZMoXGjRvHPuN+GA8aP3482+K4n58fWa1Wxxznzp3ruMdAnlOdI+aP8c7XUM+dPHky+fv7s9/e+XdW7+Pl5eX4D3JychzPM6IA4lJPckxRvYyM+KEkdCH5eadED1oGHhnPzs5mfw4Yc+nSpbRs2TJatWoVJScn04IFC9hn9U9OSUmhxYsXU1xcHPscHx9PR48epaysLMf4wsJCSkxMpNBQ/QKYuP6GDRvYebguPqelpTHmxDm4Bo6vXLmSgSYhIYF7/4yMDDYmKCiIHY+JiWFz3rx5M5WUlLzpw7xkCeXn57M5ARjYB02bNo1yc3MZ4TuMS09Pp9WrV7NrY46ZmZmOewzkOdU5Ysy2bdsc13B+9jVr1rDnwv0KCgocv/uiRYvYffCiUP8D/D4jUoJoCU3WkPT31SVFxRkOYKCGAxFxBP5i7G83b/zpIPyRy5cvZ4S3FhgJDIQ/UGVQfMafnJqayt7+K1asoNLSUlq/fj0bjz914cKFjHnACOo9wJz403HdLVu2MIYEA2IfY9euXcvOBcPh+iC8ncFoovuD+ex2O2M+MBIkBZ4Bc8LbGeOxj3PA9Hhrq/ecPn06Y2DcF/PEOOwXFxezrTpH3ANSwN3ndJ4jCHNXr+H87Pi98UyYT1FREfuMsdjiPpAs6n+Ae40KgDh3S6nYqkiUFx3iasW3IUgoGN5Qo2B84z5wHAz3M4K58IYXfQ91CWPwZme/iawq4BhvLNQHMJlAjTAkgFlVxVRSpRP2oVa5cx13x/X3nLzvB9Q8YvZsBiDR9UYFQLRer82rJepuVeIoz88pLT3vNiv130ZggHsW4HomA+2LCxJ9c0Wix7KEKkxH04D3+1x4Q0NPNhoDOwI0lPOIjY3VARWSAhJiuH6LwXxOqH6wfdwE7OjzPMBewfok23IkaixRuhfeaVaqGZ+fV1S0hy1K93l4oACuxbESBc01vTYmeQBATDLJBIhJJpkAMcmk90v/D3AkNzm1YnBkAAAAAElFTkSuQmCCUEsHCJQ1p+JLHQAARh0AAFBLAwQUAAgACABWYCJDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAVmAiQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdXNtuG8cZvk6eYsAGQQ/Was4HR0ohJwhqwIkD2C2CJrlYkUtqI3LJ7C5lyYmBpkXT9iI3BYLetCgKNE1RFG2goECv0os+QF9ByJP0n5ldkktStEambMpNxT3NzuH//tM3M+udHx4P+ugoyYt0mO22SIRbKMnaw06a9XZb47K7pVs/fPXFnV4y7CX7eYy6w3wQl7stbkumnd3WvmlTo013q6s6ZovjLtsybF9s6TYlFJOuUWy/hdBxkd7Mhm/Fg6QYxe3kXvsgGcR3hu24dA0flOXo5vb2gwcPorqpaJj3tnu9/ei46LQQdDMrdlvVyU2orvHSA+aKU4zJ9jtv3vHVb6VZUcZZO2khO4Rx+uqLL+w8SLPO8AF6kHbKAxgwk7KFDpK0dwCDUhQGtW1LjUAio6RdpkdJAe/OXLpBl4NRyxWLM/v8BX+G+pPxtFAnPUo7Sb7bwhETinLFmVKKC8qJaqFhniZZWRUmVaPbdXU7R2nywNdrz1yTvIXK4bC/H9sq0ccfI4opRjfsgfgDhYOU/hH29zDzB+oP3B+EL8P969wX5b4M92U4a6GjtEj3+8luqxv3C5BhmnVzwG9yXZQn/cT1p7oxHT65AWMq0odQmGGQqRc63Mf4hv2T8MdxJeyZQZKZVst8HNho3SSAyi/eJn2ikbK6Ua71YptUnDNOuaJRP/ALDVTMyBaacv93fwstslXDnG/RXz9ZgxaCpzDEne3aVnYq80DFgS1bqU+ZDAprMMwgYazeEyTAOKQCNReIGDgoisAcEBGIC7gkGkl7VIgpeMARQxrZcoQhZx1Cww9XrjKJBFRm7yowSkSgIY4EQ8QZFUdgSsgZJhgpZVBCCCTgJds8obYKJhGXcMU04tBHa5OKQEEGL8I1NE8RI4jZl4lCVCJp6yPc2rrUtutQJUUSI0lshWDWYNLenKG8RsyORlbiSrPRuGyIqD3o1KflcDTBAkqDQ5r6Pe+gGm7xhZ1+vJ/0IVTcs0gidBT3rUW4hrrDrEQ1iNTf6+Xx6CBtF/eSsoS3CvRBfBTficvk+A0oXdRtu7LtYVa8nQ/L14b98SArEGoP+3jS52GfzJzTSa/hgs084LMPxMwDOXOulrY7hCdoXCTQ/jAv6uJxp3Pblpi6BpDk3ax/citP4sPRMG0OY2fbRZ2dZNzup500zn4CympbsXJBM0GIT4OQELLuyTDv3DspQIXR8U+TfAiyVSwyCryzYYJrxSi8d+IfUc0jaYQUEGUYIZQI6Fw7ttZHcMQN05jAO4T51k7OeaaqxpOjCUjxcTIdby+3xj1zcbu4NexPbzkRvBaPynHuUgjwj7kd117W6ydOTZxxQ3xuH+4Pj+9VDtvXdf9kBFfY92C/50SPbLyDx+53f/LUdmrVc1vd5Dkx1JVwx31/dKVAd32nqkGSeoBk0kxaOHeGW5XR1K7Kar6N8+MsLe/UF2XaPpwO0r7w1niwn0z0p1knWVedO9tzCrZzmORZ0q/0GWAcD8eFN88ZVe8k7XQAl/5BJZLYAvVj6IC/20l6eVJ3vO8SMy8w9xTPaurCbVfVG/lwcDs7ug9aMNeBne26lztFO09HVtvQPsSAw2SqT520iCGEdGbfswYIQ2/bUAHiKa1owDTH5cEwd6kXeBQ4WrvrJwPIs1DpFCsbD5I8bU8EnbscDjo1rvpNeSR8162Y0XD/A/B1k3DoX5riCI8nGkaFcBoGmZPTMHeM+6OD2CaApNK2+CTJGxJydb457FTtV+WKvs0c0SC1+QX0CA3i46pzKN4vwCGWkEADLNk0gfZ9rB0KxjY9h5e4sScn1nPYk256nEy8PUgrfQjaETdGNTWJElz1ISSkhcuRyso23cmP0k4nySYdjjPQI4cGOKtR1WkIFIlX8smrI5CA8wozOlBBtACWcyQTqe+1FlBpGs1yWGYdg4NoAgm+ICR4+QjJ4vjIsvFVtlFYLFikHRQkoiDPh55tebZhx2pdYSOC+rtzVjUrsPZwMIizDspcTvVamrf7SWsa5GNs5YZiYjXdi2Zc1g/avrKqigXpg4nNGEp7UfoNm2iGz07qBWUjY1U6R9/+5o9oal6rTAfPoARPQO49a81BcC1VYrVaiSH8JtkRdBfCPfBVXLHhE+zVBT2s7xyDQLfcrRNS3XpIZtAERcnTY7RXl9+rS+1BnrIlIE4zagnAHqtq3oM0Zctpxx7kKFtOP3yXPsz8KArv/23ulXbT9mpFeNtZTlMPvHK8u3cD5e8v6MKt1brQtMRbl7NEQj3K7rgJ1kh1RLWBPEoxbIzS1iadcRpKiWLSYK7gmbgKU72X9Oz95bZ6awGfeDU+RVVbDUC8Dmv9AhjLElu1Njr1qI0gF4jhFAmwJYXnZX7iAh5vIOSQ2KIqothwSYTUGBshLh+35u0rHYz6aTstJwj0rQLdzkrIthKXbiwmUYdJMrJ5693sfh5nhZ0f82VmkrNpiDse5dAxK/DaWpLjEnQVHuy2Xv5wPCxfuesP7tUm0LZsq/nihZFe6nGFWPC4j0u+65J0IvcL4u34YAH5V3fKnVzyj1u1+Ov0p4zz0jkx5MOmoFphZSiBH86IUw5QGmkkllRwybQGRWGzhvp4odOG0PcuLnS6nmDIVsbCa4GMjgimmkngoZRrqbzZAjDAJ4VmYJ/SUExlGDDsssCw9QCjrjsshEScAZkH34mZoWYpKkyHocIviwpfDyoEX397ITxSinFOwFoEU4RXyBjKDCccKwE2pEygvYjLIiPWhAy/9rhAKgh5BngxDKBIJStcNNWSKwz5B+NCKxqGi7wsLnJNuKjrbzHUpuNYECWIMNpgKaokncFNojXW3GjMtQqDRl0WGrUmIrwstb5ewIhIcAJpuwZf5qeN1wGMviww+qnMUFwPaHRkFAWHxsGjYV3ly5ATGAFZtMDaSAaPAtNl00AGkteLY2PWw0eXJsy4AcwTTSqkxZ34fvJOk7w1caiWLS8EA48gmFOOCWVaEeVjPQV3JgilSlIuIEcLNA+CGyioAKaI1wPCkuR4cyHQEQaF5wAAxRA/FPMz4RG2mx4UIRRSYYFD8y3SpOs2MQ3AIYCyr8JheTq8uVAAJyGCQo8MM9JwTXmFBSECkOCSGgKRngR6JdJk8YQHILEWHv/F0vR3g3HgkZEc2+hgMKaCkgoHSggGekgYEUQbzgNxaJJ2m3oGILEW4v7FOQnvBmOhIqB7QkoCFENguRyK0OkT0mTqlAQAsRauvnzmeHNhoDSC6KAha5XSTv1LVeHAsGQYE8mYBvrHAydMSJOX28wyAIk1cfPl+ewGY8EjrbiEkK0gd6WijtjCUKIZJRxrKmVokGgy8bPTv52dfnV2+p+z0y/hF52d/uPs9M9nX3/mfj9BcONf7uqfZ6ffnJ3+++z0c3f5uXvlKygCBZB78POz07+73y8DoA2g91cE2rnUwkpqJT6CRoRqwEAwo4TrhF+ooco6MQBIKKlN4EwJUXMAeTQ8Rr/3WKAACQew9GU0r94lRDF7FjKWNLKzHQQr8P9EYlZRaxMpQ+F/SjCI4IyLQCHrOSE3lDxEvAFc+5mKF58nXgmpP4aAK5jdQ+elK4AVQBAWlNsN0oqFRt0mP95FOdr1p+gH6LvOR76bv/89uPB3K3Gji8g7gD9fmbwD/fxjlVxBDzgnkjPNuNGqciTAzRilEHglETb5CfD0nQoAir6P8mWCnd/91Znf/eX2Sp3jd+enc6o9XRdYZmxS9t3Oglp0LqcWNIDRXye1sLzczikKQutJRRUZTWwuZiANAJ4YaJuUrIr/AQu/T7jc/qzjCou41FpwyHE5p6aakjKQXEHkhv8g86JO5kHCbTLwm6i9+7+fdQKEGkDDN1CoCgRlKBBqyqRdXZWVTDUoLAFfBkwaMxG6NaFJ4dq773XzuP0RpY8+Uo/++7t1OZAAtndtHIjkEN0p00AhMGUVf1AAB+ZUg8oLO+samDnR5uQGaPg8AjbmUIq2kbLB55JwBMyCXB84IK3S4HM0UYSZOtnCEefA8owUNpHVJJQv0Ca1fgl5+2g/+qjzqLKVCyP0aKHorDk9Qg3b231vlL4UgmkAjb/mmG4BB4TgLJjA3EC4xqE+b56k/9YR679MGfkvLC+EG6enjricWu5+A81Fc0toVnL4rz+FZ389+/pX8Bac/dJdfOJq+WZJA3524BvH+z9zpf7kitfzBbaDn6KXv0PwKyiAQ9E1rfEvn98B0ujVR/q01R2fPtOiwLQ01YoyojTQLez3h21REmnhpnLsErEkKnAVjDanC9rf/voPNA+Q/SZMD1yBUSohDNES2BMQWT+HuUWAUGnOqMZKSqa5Dg19zUkDSgPEvJYl+XOWfVd/bvOMsaCRJSqGSqmENpiLKgkxAAtljHJllx0Dp5Npc4KBB6x00TUtwK/aGLmJONhtkJCXQ1gSBpyP24h64pYiLdUxdlcXNpAnksD9qU1GL2XADtU1rcKv3gy5kQ4KfD6x8pZEgk0YqVQ972a3QxgjDECleWDWwJrUXusALNa1Er9i++O1QEJXG4R0BOSIGUkxlgTyuEAk5lbiCQ6AYl1L8St3PG4oGFgQbL+9FpjaHVt+t7bd96gZRBGNNfwGz8qwufV4FhC42ZqW41dtctxQLKibkRZEcAOIyGrPloik3YKqCfzZjcCBUDQnc6DuACjWtSC/clvjM55CIzJihnEuIEJzyJsIq9cCDNAEBZAwrbQ+N0o//uPHuBr79Iu6130lF/vi8fXHgLD6i3BBgjOju91ukZTu0zifOzK6SvRr+jaZECEUwMCJwazeZ01BKez2Xk6BwJmn9tny6/5TyGnuP4UuWQ1d88Pl5Ao5CLGzi5OlIWLZ7cx3y0HGs7mfK7NISQV+T0MMwkbbrRcLny3PK87kI+am6vheX+qL5lU6ohY0pBuiId1nxI2eGw3ZYhQcNdUUwqOiBtv9ZxumIjN0aaolvRAt6V0lb7MR4tx//+B50RLDI6DiUy3ZPEcyIXJTHTkI0ZGDq+eTyz67f35UhCjT9CQbqCNqiSc5DNGSw6dBdauc0x6eQz0B1dh0XzLhvlMtGYVoyejqKLhLVCe+5DlVEQ6M95m4ku3Zf5vMXtf/mu2r/wdQSwcIJ773lPEOAABqVwAAUEsBAhQAFAAIAAgAVmAiQ5Q1p+JLHQAARh0AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABWYCJDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACPHQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFZgIkMnvveU8Q4AAGpXAAAMAAAAAAAAAAAAAAAAAO0dAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAGC0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
ಒಂದು ಶಾಲೆಯು 6000 ರೂ ಅನುದಾನದಲ್ಲಿ ಮೌಲ್ಯ ಶಿಕ್ಷಣದ ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿ ಮಾಡಲು ಬಯಸಿದೆ. .ಪ್ರತಿ ಪುಸ್ತಕದ ಬೆಲೆ 40 ರೂ ಪ್ರಕಾರ ಎಷ್ಟು ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿಸಬಹುದು ? ಇದೇ ರೀತಿ ಪುಸ್ತಕದ ಬೆಲೆ 50ರೂ ,60 ರೂ, 75ರೂ ,80ರೂ 100ರೂ ಗಳಾದಾಗ ಎಷ್ಟು ಪುಸ್ತಕಗಳನ್ನು ಖರೀದಿಸಬಹುದು ಎಂಬುದನ್ನು ವಿದ್ಯಾರ್ಥಿಗಳಿಂದ ಪಟ್ಟಿ ಮಾಡಿಸುವುದು.
- ಮೌಲ್ಯ ನಿರ್ಣಯ
ಮೇಲಿನ ಪಟ್ಟಿಯಿಂದ ಖರೀದಿಸಿದ ಪುಸ್ತಕಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪ್ರತಿ ಪ್ರತಿ ಪುಸ್ತಕದ ಬೆಲೆ ಅವುಗಳ ನಡುವಿನ ಸಂಬಂಧ. ಮತ್ತು ಅವೆರಡರ ಗುಣಲಬ್ಧ ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು . ನಂತರ ಖರೀದಿಸಿದ ಪುಸ್ತಕಗಳ ಸಂಖ್ಯೆ ಗಳ ನಡುವಿನ ಅನುಪಾತ ಮತ್ತು ಪುಸ್ತಕದ ಬೆಲೆಗಳ ನಡುವೆ ಇರುವ ಅನು ಪಾತವನ್ನು ಕಂಡು ಹಿಡಿಯಲು ಹೇಳುವುದು
- ಪ್ರಶ್ನೆಗಳು
ವಿಲೋಮ ಮಾರ್ಪಿಗೆ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆ ಗಳು.
ಚಟುವಟಿಕೆಗಳು #
- ಅಂದಾಜು ಸಮಯ
- ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು
- ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ
- ಬಹುಮಾಧ್ಯಮ ಸಂಪನ್ಮೂಲಗಳು
- ಅಂತರ್ಜಾಲದ ಸಹವರ್ತನೆಗಳು
- ವಿಧಾನ/ಬೆಳವಣಿಗೆಯ ಪ್ರಶ್ನೆಗಳು
- ಮೌಲ್ಯ ನಿರ್ಣಯ
- ಪ್ರಶ್ನೆಗಳು
ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು
ಕೆಲಸ ಮತ್ತು ಕಾಲ ಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಸಮಸ್ಯೆಗಳು
ಯೋಜನೆಗಳು
ಗಣಿತ ವಿನೋದ
ಬಳಕೆ
ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು {{subst:ಗಣಿತ-ವಿಷಯ}} ಅನ್ನು ಟೈಪ್ ಮಾಡಿ