"೧೦ನೇ ತರಗತಿಯ ನಕ್ಷೆ ಮತ್ತು ಬಹುಮುಖಘನಾಕೃತಿ" ಆವೃತ್ತಿಗಳ ಮಧ್ಯದ ಬದಲಾವಣೆಗಳು
೧೨೮ ನೇ ಸಾಲು: | ೧೨೮ ನೇ ಸಾಲು: | ||
=ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | =ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | ||
− | ಕೋನಿಗ್ಸಬರ್ಗನ ಏಳು ಸೇತುವೆಗಳ ಸಮಸ್ಯೆ: ಕೋನಿಗ್ಸಬರ್ಗ ನಗರದ Preger ನದಿಯ ಮೇಲಿರುವ ಏಳು ಸೇತುವೆಗಳನ್ನು (ಮುಂಚೆ ಜರ್ಮನಿಯಲ್ಲಿ ಆದರೆ ಈಗ ಕಲಿನಿನ್ಗ್ರಾಡ್ ಮತ್ತು ರಶಿಯಾ ಭಾಗ), ಒಂದು ಬಾರಿ ಹಾದುಹೋಗಿ ಪುನಃ ಅದೇ ಪ್ರಾರಂಭ ಸ್ಥಾನಕ್ಕೆ ಮರುಳಿ ಬರಲು ಸಾಧ್ಯವೇ ? (ಯಾವುದೇ ಸೇತುವೆಯನ್ನು ಎರಡು ಬಾರಿ ದಾಟದೆಯೇ ) | + | ಕೋನಿಗ್ಸಬರ್ಗನ ಏಳು ಸೇತುವೆಗಳ ಸಮಸ್ಯೆ: ಕೋನಿಗ್ಸಬರ್ಗ ನಗರದ Preger ನದಿಯ ಮೇಲಿರುವ ಏಳು ಸೇತುವೆಗಳನ್ನು ಒಂದಾದ ಮೇಲೆ ಒಂದರಂತೆ(ಮುಂಚೆ ಜರ್ಮನಿಯಲ್ಲಿ ಆದರೆ ಈಗ ಕಲಿನಿನ್ಗ್ರಾಡ್ ಮತ್ತು ರಶಿಯಾ ಭಾಗ), ಒಂದು ಬಾರಿ ಹಾದುಹೋಗಿ ಪುನಃ ಅದೇ ಪ್ರಾರಂಭ ಸ್ಥಾನಕ್ಕೆ ಮರುಳಿ ಬರಲು ಸಾಧ್ಯವೇ ? (ಯಾವುದೇ ಸೇತುವೆಯನ್ನು ಎರಡು ಬಾರಿ ದಾಟದೆಯೇ ) |
ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ಗಮನಿಸಿ | ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ಗಮನಿಸಿ | ||
೧೪:೩೧, ೧೫ ಆಗಸ್ಟ್ ೨೦೧೪ ನಂತೆ ಪರಿಷ್ಕರಣೆ
ಗಣಿತದ ತತ್ವಶಾಸ್ತ್ರ |
ಸಂಪನ್ಮೂಲಗಳ ತಯಾರಿಕೆಗೆ ಬೇಕಾಗುವ ತಾಳೆಪಟ್ಟಿಗೆ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ
<mm>Flash</mm>
ಪಠ್ಯಪುಸ್ತಕ
ಗ್ರಾಫ್ ಮೇಲಿನ NCERT ಪುಸ್ತಕಕ್ಕಾಗಿ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಮತ್ತಷ್ಟು ಮಾಹಿತಿ
ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು
ಸಿದ್ದಾಂತದ ಮೇಲಿನ ವಿಕಿಪೀಡಿಯಾ ಲಿಂಕ್
ಪ್ಲೆಟೋನಿಕ್ ಘನಾಕೃತಿಗಳ ಮೇಲಿನ ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಸಂಬಂಧ ಪುಸ್ತಕಗಳು
ಡಿಎಸ್ಆರ್ ಟಿ ಸಿ ಯ ೧೦ ನೇ ತರಗತಿ ಪುಸ್ತಕದ ನಕ್ಷೆಗಳು ಪಾಠದ ಲಿಂಕ್
Introduction to Graph Theory, By Douglas B.West/
ಬೋಧನೆಯ ರೂಪುರೇಷೆಗಳು
ಪರಿಕಲ್ಪನೆ # ೧ ನಕ್ಷೆಗಳ ಪ್ರತಿನಿಧಿಸುವಿಕೆ
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ಸಂಪಾತ ಬಿಂದುವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು.
- ಕಂಸವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು.
- ವಲಯವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು.
- ಸಂಪಾತಬಿಂದು, ಕಂಸ, ವಲಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ನಕ್ಷೆಗಳನ್ನು ಪ್ರತಿನಿಧಿಸುವುದು.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
'ಯಾವುದೇ ಬಿಂದುವನ್ನು ನಕ್ಷೆಯ ಮೇಲೆ ಗುರುತಿಸಲ್ಪಡದಿದ್ದರೆ ಅದನ್ನು ಸಂಪಾತಬಿಂದು ಎಂದು ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ.
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1 ಜಾಲಾಕೃತಿಗಳ ಪರಿಚಯ
ಚಟುವಟಿಕೆ #2 ಗ್ರಾಫ್ ಸಿದ್ದಾಂತ
ಪರಿಕಲ್ಪನೆ # ೨ ನಕ್ಷೆಗಳ ವಿಧಗಳು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ಸಮತಲ ನಕ್ಷೆಯನ್ನು ಗುರುತಿಸುವುದು
- ಅಸಮತಲ ನಕ್ಷೆಯನ್ನು ಗುರುತಿಸುವುದು.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
'ಯಾವುದೇ ಬಿಂದುವನ್ನು ನಕ್ಷೆಯ ಮೇಲೆ ಗುರುತಿಸಲ್ಪಡದಿದ್ದರೆ ಅದನ್ನು ಸಂಪಾತಬಿಂದು ಎಂದು ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ.
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1 ಸಮತಲ_ಅಸಮತಲ_ನಕ್ಷೆಗಳನ್ನು_ಗುರುತಿಸುವುದು
ಪರಿಕಲ್ಪನೆ # ೩ ನಕ್ಷೆಗಳಿಗೆ ಆಯ್ಲರ್ ನ ಸೂತ್ರ
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ಆಯ್ಲರ್ ನ ಸೂತ್ರದ ಸಾಮಾನ್ಯೀಕರಣ.
- ಆಯ್ಲರ್ ನ ಸೂತ್ರದ ತಾಳೆ ನೋಡುವದು.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
'ಯಾವುದೇ ಬಿಂದುವನ್ನು ನಕ್ಷೆಯ ಮೇಲೆ ಗುರುತಿಸಲ್ಪಡದಿದ್ದರೆ ಅದನ್ನು ಸಂಪಾತಬಿಂದು ಎಂದು ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ.
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1 ಆಯ್ಲರ್ ನ ಸೂತ್ರದ ತಾಳೆ ನೋಡುವದು
ಚಟುವಟಿಕೆ#೨ ಆಯ್ಲರ್ ನ ಸೂತ್ರದ ಬಳಸುವುದು
ಪರಿಕಲ್ಪನೆ # ೪ ನಕ್ಷೆಗಳ ಪಾರವಾಹಕತೆ
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ಸಮಸಂಪಾತ ಬಿಂದುಗಳನ್ನು ಗುರುತಿಸುವುದು.
- ಬೆಸಸಂಪಾತ ಬಿಂದುಗಳನ್ನು ಗುರುತಿಸುವುದು.
- ಪಾರವಾಹಕತೆಗೆ ನಿಯಮಗಳು.
- ಅಪಾರವಾಹಕತೆಗೆ ನಿಯಮ.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1 ನಕ್ಷೆಗಳ ಪಾರವಾಹಕತೆ ಪರೀಕ್ಷಿಸುವುದು
ಪರಿಕಲ್ಪನೆ # ೫ ಬಹುಮುಖಘನಾಕೃತಿಗಳ ಆಕೃತಿಗಳು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ನಿಯಮಿತ ಘನಾಕೃತಿಗಳು ಮತ್ತು ಅನಿಯಮಿತ ಘನಾಕೃತಿಗಳನ್ನು ಗುರುತಿಸುವುದು.
- ನಿಯಮಿತ ಮತ್ತು ಅನಿಯಮಿತ ಘನಾಕೃತಿಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ತಿಳಿಸುವುದು.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1
ನಿಯಮಿತ ಅಷ್ಟಮುಖ ಘನಾಕೃತಿಯ ರಚನೆ
ಚಟುವಟಿಕೆ#೨
ಬಹುಮುಖ ಘನಾಕೃತಿಗಳ ಅಂಶಗಳು
ಪರಿಕಲ್ಪನೆ # ೬ ಬಹುಮುಖಘನಾಕೃತಿಗಳ ಆಕೃತಿಗಳ ಅಂಶಗಳು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ಶೃಂಗಗಳು, ಅಂಚುಗಳು ಮತ್ತು ಮುಖಗಳನ್ನು ಗುರುತಿಸುವುದು.
- ಒಂದು ಬಹುಮುಖ ಘನಾಕೃತಿಯಲ್ಲಿ ಶೃಂಗಗಳು, ಅಂಚುಗಳು ಮತ್ತು ಮುಖಗಳ ನಡವಿನ ಸಂಬಂಧವನ್ನು ವಿವರಿಸುವದು.
ಶಿಕ್ಷಕರಿಗೆ ಟಿಪ್ಪಣಿ
ಚಟುವಟಿಕೆ
ಚಟುವಟಿಕೆ#1
ನಿಯಮಿತ ಅಷ್ಟಮುಖ ಘನಾಕೃತಿಯ ರಚನೆ
ಚಟುವಟಿಕೆ#೨
ಬಹುಮುಖ ಘನಾಕೃತಿಗಳ ಅಂಶಗಳು
ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು
ಕೋನಿಗ್ಸಬರ್ಗನ ಏಳು ಸೇತುವೆಗಳ ಸಮಸ್ಯೆ: ಕೋನಿಗ್ಸಬರ್ಗ ನಗರದ Preger ನದಿಯ ಮೇಲಿರುವ ಏಳು ಸೇತುವೆಗಳನ್ನು ಒಂದಾದ ಮೇಲೆ ಒಂದರಂತೆ(ಮುಂಚೆ ಜರ್ಮನಿಯಲ್ಲಿ ಆದರೆ ಈಗ ಕಲಿನಿನ್ಗ್ರಾಡ್ ಮತ್ತು ರಶಿಯಾ ಭಾಗ), ಒಂದು ಬಾರಿ ಹಾದುಹೋಗಿ ಪುನಃ ಅದೇ ಪ್ರಾರಂಭ ಸ್ಥಾನಕ್ಕೆ ಮರುಳಿ ಬರಲು ಸಾಧ್ಯವೇ ? (ಯಾವುದೇ ಸೇತುವೆಯನ್ನು ಎರಡು ಬಾರಿ ದಾಟದೆಯೇ )
ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ಗಮನಿಸಿ
Image Courtesy : http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html
For solution click here
ಯೋಜನೆಗಳು
ಗಣಿತ ವಿನೋದ
ಬಳಕೆ
ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು {{subst:ಗಣಿತ-ವಿಷಯ}} ಅನ್ನು ಟೈಪ್ ಮಾಡಿ