Difference between revisions of "Construction of direct common tangent"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
m (Preeta moved page Circles and lines activity 4 to Construction of Direct common tangent without leaving a redirect)
Line 1: Line 1:
__FORCETOC__
+
===Objectives===
=Activity - Construction of direct common tangent=
+
===Estimated Time===
 +
90 minutes
  
==Estimated Time==
+
===Prerequisites/Instructions, prior preparations, if any===
90 minutes
 
==Materials/ Resources needed==
 
# Laptop, geogebra file, projector and a pointer.
 
# Students' individual construction materials.
 
==Prerequisites/Instructions, if any==
 
 
# The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
 
# The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
 
# They should understand that a tangent is always perpendicular to the radius of the circle.
 
# They should understand that a tangent is always perpendicular to the radius of the circle.
Line 18: Line 14:
 
* Radius of one circle is taken as 'R' and other as 'r'
 
* Radius of one circle is taken as 'R' and other as 'r'
 
* The length of tangent is 't'
 
* The length of tangent is 't'
==Multimedia resources==
+
 
Laptop
+
===Materials/ Resources needed===
==Website interactives/ links/ simulations/Geogebra Applets==
+
* Laptop, geogebra file, projector and a pointer.
 +
* Students' individual construction materials.
 
This geogebra file was created by Mallikarjun sudi of Yadgir.
 
This geogebra file was created by Mallikarjun sudi of Yadgir.
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAEhUV0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHsExPsiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAATs0lEQVR42u2deVBU157HO25REqOJSwwqyL4IyNLSbDbQzaYszS4GZFEEZVEE0SgYcMkzyIsGFRBNND5NzGTeZBnzylRMxqSm6r1KTcyrl0pNKpVJ1dT7Y1JTM6lKVZaaSWbmO+d3m4uX29ttZBN/VH3rnr47fc+nf+d3z+/8jk6n08GVMDQ0ajmjVPfUzPufWOMp1zulhYTYAEJl0n+eOsWAsB5sQGa0GBDWvQIyZ/ZsBoTFgKiVEhiIrpwcWNatQ4yXl1Re7OEhfXZWpmPXLFnCgLDuCrhb/stfHG+biU2s+9p5Z0AmBoZFi6xLHx/o/vrX0RDI5ZUr736Wj/niC+v+tJ7Kyv3tnYP2ffvtu9eSryufY6oACXrySbuAZIeHjzjwc2bNYkBYD6aTLkOgth7v7d59f4DBgLAmEpDH5s+3u37RggXcxGLNbEBk59yRE04Q5EZEwBQUdP865wwIi/tBGBDWBAEyI8NKGBDWvQKijrtSOuP3fVgJAzItRH+ffvqpVO7v78dPP/2EgYEBKP+U+3711VdS+ZNPPsG3337LTSwGZOYDcufOHan8888/Iy0tDT/++KPDfa9evSqVu7q6cPjw4akFJNHfHznCAdfSY6520Kvi4yUHnwFhuQJELpPl+OWXX1BXV2djQebMmSOVf/jhB+nz119/jS/kzsOpAmT1E0/gkYcfZgvCmjTp9XrU19fzWywGhMWveRkQFgPCgLAYEAaExWJAGBAWA8KAsBgQBuT+U5PQWaG6cdpvygE5fF2Hf/g/1/vdhvZ9tOzb+74OH/xq3ffUh66PU25zes9uAELnlDWWL1t5nPocynPPmq1D8Hrn3729exjrfU2lHhYqE5o9/DmAosmHleBkv2kLyPv/pYOnn7V8/p+sogfz9n9Y1/V9PPphKyGQy6dvWx+0ch9751JfQ9atX2zPee6POrz177bndnbPt/5bh99/P2vkXNLnf3P8v6kr4dWvRm9/9V9s70e53d73IV9HXnftax1e/1frUnkf6v/D0fcpX1d+DvcDJMeVI1WF0oa1wcl+0xaQrr+5+yumrrzyg6MH3P8nsd//3l3/99+NfqBUVu5j71zqa8jnV1oQef2Zf7SW1ed2dc/qCit/dnQ/cvmVf7YF8b2fhH4efT/K7cp7kstqQJr7dDAWWZdqQJT/hxoQ+bPyuvQcuBnHPsi08UGoUh64zJWKAWFAWAwIA8Iag+zluHKU98pZ/gKtubLkc7i6Lu2n3kedn8v+tRkQrthu6ssvR1ektLS7ualkUY4q2ibnxKJ8VfRZmevq++/vbifJObFoXzqnfLyjvFfyOSiLjrNcXPJ+6ntTbleX6ZoMCAPC4iYWA8JiQBgQFgPCgLAYEAaExYAwICwGhAFhMSAMCOse5eHhgaioqCkTXZ8BYUDuC82aNQtFRUXw8/Nzup+3t/eYr+Hl5aX5OgwIAzKuooqbn58/5uMvX76M6Oho5AwnI7SnXbt2ITQ0VCq/9dZbSEpKwvnz5/Gwxnxu4eHhKC4udnkdBoQBGf+xHcePY8OGDdbBTwEBSElJkZSQkOD0uJqaGpjNZhw7dgxDQ0PYtGmTtP7QoUMj2RY/++wzad3HH388ctybb74pVfK9e/eOrLN3TG1tLfbs2SPBRJ8//PDDUddhQBiQSVFHR4fUrpcGPwUFSXl3STI0jtTZ2SlZnubmZpfXeOedd6QmkslkwoULF6RK/9xzz2GRHO9lb8huUxOWL18ulSmlKZ2DnXQGZEaKmlfp6eljPj4rK0uL78GAMCAsBoQBYc1kQFYLlQq1CPXQWO/h9C/9w4P4G4TyhZaqjps7dy4DwpqZgBiFfiN0QeiE0BahVKEQoUCFwofXVwq9IDQgVG7ZgPiwZcIRm8WAsGYWIIVC14TahPQqGLTI6L8aWaYkvJzhhz/3xuHkgUisWvXIyPkXL1yIyMBAbM7IQM6GDXh2xw74dMfg+eZmxIWHo76wEKuWL8ejzntWWQzI5CpL6Dp1AI0BCqX2d2xDxKMeUjlS6PTiefigeR2uDWbg5tW9yIiLRWFqKoLXrEGgl5ekJe3B0jJg9WpEBwfDvH49isxmPFNdjTA/P8yfN48rCQMyNZoj9KJQ6z2CIau7d89IOVJYgarYWFzYvh03hHXosISj/4wZp3tTkZoQZAOIWgTMWl9f9O3bB39RnjN7NlcWBmTytEroVaHMcYIjSx+KLZZkqVwvmk9NJpMESIao7KQhoWeEIkN88ezBRLw0lIGWRgM8D4baBWQEFCGyKmR5wrS/O2cxIGNXvNDLw82gwHFSx7FdiHhkASpFZT5ksYyAoVSXUI+i8luy1qLn/UzJqmSnr3UKSpBolrVXVmKNpydXmnuQr7DK9iJqY2JisE9Y69zc3CmN7FXex+OPPz75gAQLvTSOYMj69X9+xY7ERDQKy2EPDiUkzygqPjWxwgPW4EBrvGRVaEmfHVmT/JQUZMbHc2WfgChejcGD9xTJqyXKV3Ufk/clrBB6Zfj1rNaKHyza/saAAJRmZ2NnXR1qysulZVVZGWqFI12ycSOMieuRV16A8rJ8ZPj6OAWEdF6o1IEPkpUaIlkU8lcKc8LtghIbFoa2igqO2h1D1C7FRJ09e1aa9lm5/t1338XNmzddBg8qI3nnzZsnRf9SmX75N4q6EO/ix8vHx0eKAFauu3HjhgQERfmWlpaqgxgnzyG/RP+IRjDWLliAiqIi7NyxA1vFTW80GGAMDLRRpl6PP/75Fory8tBQW4OkU+0w5ZiQFhPhFJLfCyU4cdLJipCPQqCQz0K+i3K757JlqNLwa/cgRO26E7lLIell4sdttuKlx0MPPSQdQ80a5b6uInmpSfTRRx9J5ZUrVyIiImIk2NHesbLkY+xd+4MPPpgaH4R6wnO1WIy5c1G1eTPqtm2DSRBtDwqlWkuLcf53PSg3GlEr/smjBw+i3JIDc4JegiU9MsyuVdksdNEJIErRW68zp0wY6k9DqSV8pLlFTa2lixc/8FG77kbuElxSv1dhoTSaj6xRhbDIAwMDmiN5g4ODUVJSgm+++QYNDQ3SNd944w3JQjl9ObRqFe7cuSMt6fp0HvnaDqJ8J/7LXDocIuIKjgThCO/evVsTGKRkodcvncL+xioJEFJFaioOiC+sSjwoAsGcGo/UUtEM626wAYWaWn4aAJEV4rsGddUxEihHOpMQG+mPF1tb2Ye4jyJ5xxDlO/H/VK+QwQUcYeKXhOhPj4zUBAfpte5uDL3aOwKHUgdEW7VB/MLIMKSHBMFkSUNKdQFSt+RIsOSJ9UVuAKKU0RCI3hMpONuXgiP78uy/rWNnnl/zaunvOO4CjoiFC6UmlVYwSBbhezy7rRp9F4/aBYS0T/gvWxITbZpX5iyj5Kek1Jci66gB6WMARBZ1Ina2ZqLneQPa2iKwYgWHqTAgbmiPUKwLQAgOR064I/UKC3H6hQ60bCtzCAipo6XFqbO+7lo1WosyESosi7twBHl7IdniheaTBnSdy0Dhbz3QfysMW6pzsNJnKVcuBsS1elzAsSk21vqq1g04SH3CV+m/csIpHKTmp59GtWizOgKEfJCrVOFFE2xtew1ChHUJFtbFFRwphV6oPOWFnEYvRBs9kZkZiUVeOvjFLYE+LRyGPToYD+sw14MrGQPipHl1wJX12L7dbTg2CT/l+aadePF8t0tAXFkRAuQlsTTIViHATwIkdHeFBAuBo4ajpNML+Xu9EBN3Vx1NFVjiMxslrTkINa6WYPE26pB2giFhQByoSijZaXi6PwozMtwG5OTOnejvP4KG0nxNgBwUzn9eSIhDQNrEcpc9S0FWpbUKoY1PIyhBbw1PabGFg5SUHIgkYyBazuyS4JC1IkqHhDauaAyIHXXRazkngGyxWJAiKq67gLTk52PwWo8mOEg7i4pQ5yA+a91hPQ5lZuKFuDhEinsJ8va2BcXXB0GRYYjqaUDxNRNissJsAIlL9MXGTdE2gJAMu3VY6MmVTVOXwNKlUh/FRMrDvfE+E/fPnqbgNCeAUNiIu3CQ/jDYh9+e6dQMCKlNNOUcWZAcsaQ/V35HQbtwyuuiELM5HjEX20eBEhr9JPr6DiJta7wNIJ56HSIquPJr0WOPPSZBohal7KmuroZer7e73ZWUx2tNMDfhgPS68D9qhAM9FkBeufoCanM3ugdIba1DQGh5VcNbq22DqqZVjbAm9ZmIOd2ACL0njlzcj2UB82wAISW2c+WfrGDGcT5+6gDZVlHhNhxRQUFoaW7GOe/n3NJ7mz9Ez6L2UdocbEGJqVQq3xQ66EJnze3oXmWrQ+GdyCzYitq2Rly4cs4uIPRGi4MZJz6YUR20KJ9vp/BbNWZSnD6AlOXmum9BBCDlWwtRk5nulgXZL75wtfXIFudabfaWylc0WJCyoyoLUmywWpHzrTCYQrC5Oh9P+M62C0j8A+aoT1Uwozpo0d75phUg/k4AKRU0j6WJde7wfpzoaXcLkH1OmlgbxXJQAyDFnV6ITfdDTF6U1QchQIx+EixhMU+h+0QTjKUxNnAsDdEhtpGDGScjmHH9+vUjQYvy8fL5ph0gx4YHSDkCpNBslsLV3QVkqL0d56/3aoaD3mA1lpY6BGSrWB51BUhIEOL6apE1ZEFMgd7mLVZw1HLxQBLQ0LvNBpDwLTo8FcV+BL/mValeKMkJIHGrV6O8oMBtQNqKi3GqrxM78rM1AdJeX49Sg8EhIHvFstleKEmAH0K2WqROw+DUeOlzRa+wIsm2/SAVJSnIy4lFW3+TDSDJ3VzRGBA78h8eB+Jw7MecOdKoQHcB2ZGZiZePdmp+1fvsvn1Oe9JpXIhRAUawIcoKRY4JwUbDKGgio72w9QVbQEymUHgGeaD8YCH8DMtH4FhXqcMqA1c0BsRJX4gzR71QtEndDVQkdVVVaYrFokFUbTU1rmOxhKjHPMSS5jJwMd5shUS2JNGG1RjobpWACErwRFm7RSqHFOoQXcuVjAFxomc0ZEncISqwu4BcEU7gyd4DaNxS6BSQLuGvZPn6OgQkot+CDoJCwGEv7sqR1kV5obzHC5Y9XtiUuw7hek88GTAbW+t9ULY1FyHpCxG2hSuYVtGbJ3oFO9kazlwydYBQM6vTBSDZcXEodjMmKyM8HIOH9jsNWKwR52wuL7eBgobh0pgQGg9i7tuEbF+fMY8HiU/zwsCVIly5FYfLt/SoObUMvusXw+MJTuigdf8FCxYgOzv7wc2LNaDBilBcVrHwLdyB5Pi2bRj83fP24RDnOrRnz+iBUulJ0ojC5NYqZAiHm17vbh7jiEI5VdDVS7kY6C3E/Pm279mXLVvGCR009IFYxLOXs/HLGUZoaK1RPEd6PWyvA1DeT2uHo/p4mvKN1ml4RhP/ha3R0GlIDrs0cCo2VjMgBWLfWzeu2AyaonHph5qbUSq2U3YTshYbeluRHjY6ovccOeRuAkIJ5iiBA4nKGcL6OUp2/d1333FCBwd9IAbhd7a0tIyyHsoOwdu3b0uAyOPPlR2A6o5Dex2G6g5CdQcizVlIgLWLJvi0yKx4VChNQ+KGytJSlLjRgbjTkotrb5wZgaPSbMaBpkYUJCdJWU3MRoM1s4mqmVUodE1jVhN1ulI5sRzBkT08KSTLfV26dEnqzJOth7JD8OTJk9K2ixcvSp19yg5ArR2Hyg5HddaTctH0bmtrk+KzpgUg83XWDO5aksZt8PNDjfgCcsU/pSWzyd/+4SUkCZPcuqMWZX83IGUxoWwmzobavka+iAtAKMUPWQpKJJduHL0fgVFsMnFFvwdlCB+xsrKSc/OOtEWFLutsJ8Kxmzhu/nxkCzNK/SRb8vIcZjsxh4WhuCQfheUlyK/ZbNOMsqdeoZ0OMivqw+5ai+b69VKqHzU46aJ5kLhuHWd859e8468EnXUKNc2pR4VvkrhmDYrErw31ulNSuV319VJTjMLlKVwlYY03Oo7sxJAwnyVhYU7hoNGDp1W5eWlZURop5buiVD6U0seRVUkSoBYJy8FwMCATJppTsE+jJdGib778Es+eaIJ+0WPYLZy6A8L5sgfHXlXUriHSH4feMUvpRSkhnD1roVSEvz86t29nOBiQidd6odeHLcp4QGJJiRHWJFYqkxW53NICS1DQCBwnhc7KA5+2RktNqOePGRFyNMKlkx67di0qNm5EFieCY0AmU08IvaazTtI5HpCQFZHLKStWoFb4MIOiOXbNxwddotlEQFAzippTrmaYIm2IipImz3muoYGnYmNApkYP6axTsBEoFt29T6Kzdv48qUzNt2fmzMLtwgD86e0qvHyuAEebqhEZNDqcRA0IvZ0iS3G4tlZKTr1iyRKuJNNAZuFruhtG4jc+M4JNjy/gUargQlfvwaKkRwYiJswPh70X4vOuGFw7pkdc3PKRa9AkndRcOr5rFyzJydhuscB0MQ8lwm+hdYkREdhRUMDWYpppikNRpteXsXB4HAlN0UYzUTXrrPOmOwWDelOHj6mvKkaZyReLF2us5DxP+rSP1VKGosiT5lBPfWpq6qj9KHyEpkTIy8sbCVGZcYCM+uXQWaeI7hYaFOoXuiB0cRiGczrrtAoHh/P/yiEGbl2HAZnSWC1HcVr2QlFI8qQ5169fx5UrV6SwE3kbhY98/vnnGBwcHM8pEh7wB8aATGmslrOx6upQFOWkOQRPY2Oj1BMvJ4Kj8BGK4aJJOF1NpPNAA+KWeWVAOBSFLQgDwmJAGBDWuOv/ATStANXfGCYwAAAAAElFTkSuQmCCUEsHCPTtjTDxEwAA7BMAAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbNVXTVPbMBA9l1+h0d12/JUPJoYhYQLMQJkpHHpVbCVRsSXXUgjh13cl2ZA0EJqWMCUHW16v3q7ek9ab/vFDkaN7WkkmeIJ9t4UR5anIGJ8meK4mThcfHx30p1RM6bgiaCKqgqgER9oTPUh2yMVXUlBZkpTepDNakEuREmXgZkqVh563WCzcBsAV1dSbTpX7IDOMIDiXCa4HhwC3NmkRGveg1fK971eXFt5hXCrCU4oRJFaQtBIoLTKdRIJTylUlGEArIfKXbOc0L3VElgo+YjnVYzkTiwt+C28HpEqwquYAnopyOSSlXomsbU28C17OFSKtBJ9gRPwED+AWJHiIvcbleq4anzNjhXASQFKNhxRTNjKZq5mo9CgjSlvAk+a0gJSRWpZgKQXjCqOcjGmu4x0dfOnrfJEY/6CparKt35sHT/vA66HIRYUAHaSamus4wUEcQ9i8nBGwgIjGOSdLWqF7kmuv2gJ4VyKja1bCWWG0RVJRoNEH7kpKMzOy+cKgBDizfyYkl3U6qRBVJtGD3jmdCKMlZOKC76PddMbHLPWGPdYxw1WrWuarqfS9mqU3+Bp8KF/Xk4mkSi/SCQKzRr+9bzodc2YhlBO7wd75HH7+/ef7brchrN19F8ZSURSEZ4ibenPFMkuansueSsXAlophTc9zfTi1cDXIGwKcbgpgV7ldgXZkJNC3sb3tvKVje2h72/R5Zjl2o4bkKOyt/uKPo/zkNcpHu1A++mDKt7DadYOOpdV3O901Wvexk7+R5cuMnm4wmm1ntAKkhq7sLT5Xju1rVaT1Hmx23Hh9axpqW2673Vr92a+UE3ZcP4ibes44tTyqGUvvOJXQIwRNDWrZwTnLMqq7KjuH/uR2itTXBLOizFnK1BOXua5aF1xBN0ZNnyBt4it83FFa3gL0Nb+tCJe6G7M+zR7cRcy6Io02xKR/Lib9X8R0QjfyjYA9c0hAsghajV70aQV7Av5NtszKRjdkO9ulqp391Zd8H0Ut7IRux++GsW2ZnAC+0H7UjdrN4QyNmh3oF6N29E/lzVvtwvWz6dX1oPl/cvQLUEsHCKaxR5IdAwAAEg0AAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgASFRXQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlnHlv20YWwP9uP8VAKBYJNqLnHrK1Wzguig2QNI6dXRTbbQuKomTGEqmQlI9s97vvm4MSqSuiLcdKY8ShyBnO8X7vmhHpwx9uxiN0FedFkqVHHeLhDorTKOsn6fCoMy0HXb/zw/dfHw7jbBj38hANsnwclkcdrmsm/aOOH8YDxjHvyp4YdLmKBt0QR7Ib9Eg/GPAIDyjtIHRTJN+m2c/hOC4mYRSfRxfxOHyZRWFpOr4oy8m3BwfX19de1ZWX5cOD4bDn3RT9DoJhpsVRx334Fppr3HTNTHWKMTn45dVL23w3SYsyTKO4g/QUpsn3X391eJ2k/ewaXSf98gImTH2Yx0WcDC9gUkrAUA90rQlIZBJHZXIVF3Bv7dRMuhxPOqZamOryr+wnNJrNp4P6yVXSj/OjDvag0SxP4rR0hcR1clDdfniVxNe2Hf3JdME7qMyyUS/UTaA//0QUU4ye6QOxBwoHKW0RttcwswdqD9wehK3D7e3cVuW2Drd1OOugq6RIeqP4qDMIRwXILEkHOfCanRfl7Sg243EX5tMlz2BORfIBKjMMArVChusYP9O/En65LjhoTpLUei3zactOqy4JVf72fdJ7zZRVnVIhl/ukYs085YZO7cS3mqioyRa6Mv/M71KPbNM0F3u05/frUPJPMsXDg8pWDp15oOJC13XqU8bjQhsMC5AItN4TJMA4pAI1F4gEcFAUgTkgIhAXcEp8JPVRIaaggCOGfKTrEYaMdQgf/uPKNCaRgMb0VQVGiQh0xJFgiBij4ghMCRnDBCOlDGoIgQTcpLsnVDfBJOISzpiPOIxR26QiUJHBjXAO3VPECGL6ZqIQlUjq9gjXti59PXRokiKJkSS6QTBrMGlrzlDfR0zPRprRwU/lbJJ0Mi0bsorG/epjmU1mUKA2eKa5w7OequEPvzochb14BDHiXCNF6CocadMwHQ2ytEQzy7TXhnk4uUii4jwuS7irQO/Cq/BlWMY3P0Htourb1I2ytDjNs/IkG03HaYFQlI3wbMzZiNQ+09mo4YTVCni9QNQKZO2zWtlvBiVoWsTQf5YXVfWw33+ha8x9BEjydTq6fZ7H4eUkS5rTODww4eYwnkajpJ+E6b9Aa3UvWi5oHn2046qij/D9aiRZ3j+/LUCX0c2/4zyDmkp4gnAsGYWPPAB/cmtLmCQeF0LhQDEfA3IoKqJQWyGjHg04FxJTwTlRcM/qEtdvfDXjE97E86kOc23gtZMXxfNsNL9kZn8STsppbtIG8JG5ntJxOhzFRkOMgUNMji572c25VQ1m23p7O4EzbEfQGxqpIx3zoNj835uV6kFtKtfNzcpJQE0Nc+zZo6kFamsH5SZJqgmSWTdJYVwa7jh7qdyVVnod26dpUr6sTsokupxPUt/w83Tci2eq02yT7KrNw4MF3Tq8jPM0HjlVBozTbFpYy6xpeT+OkjGc2gInklCD+icMwF7tx8M8rgY+MsmYFZgpxXUlXbpsmvopz8Yv0qu3oAULAzg8qEZ5WER5MtHahnoQBy7juT71kyKEMNKv36dtD6Ye6XAB4im1aMAqp+VFlpt0C5wJHLXJjeIx5FqoNIqVTsdxnkQzQfdN3gaDmrpxK0/YkWspo6z3DrzcLCLae+YYoXimYFQIq2CCWQXTx3A0uQh1zkecsoW3cd4QkGnzVdZ33bt6xUgni2icQCwEOx2HN0YfUdgrwA2W
 
kC8DkXSeL9vxVW4EY52Nwy1c6A+3MLhAfxgkN/HMx4Ogkg+gGGFjRnNrKMFBX0I+CjoGLsRKjwj76R9Jvx+ns9GGKeiQIQE+amKniyA+xFbBS2fSaALTNx6hxt/h+Siosz/IIiru0T1DxRwq0ZoUeGBLSuLPnVS+yInsnUnpEVlSrD0p4kgF8nMjZQLzTOavO/dhYo49d5wxwRuZvB4MirjUQuzqTYDbeYxdQIZbyICskoGLR4UBpmHf6j41rw92V8Ou6rU8dPrh/En96kIkqws1ysbjMO2j1KxlTo1Q5yl1CMnpSZJHo/jX189Q/zcnwmlZFR7b9lwrH4F0/IiQHCLaBtFdAJHKoh6I0Hk81NcXGL0GiRBHo8En3MyncK1VBMKPEKpNuYEI81rGas62BLTEYC5J7ASpkxgjRzFra5UPEjU/ssIFxe9Te0thU89kPBklUVLOJDbSUF+kJSSiscnElvPLyzie6JT+dfo2D9NCbxfaOrW8dQ02a0SrqelsYJFbtJkbZIy1IBXdkZozrGqdUYtGoh20lUDUR4Akwzi9gsHCQhShG+w2aG+xI/+hunIDIupaZSDu0gdSMysw2Ty5QcdV/eOq1jGsoLvEYwGu/0CsOmauj2NYSneNSz2GdTStWlzUFb07kAyS6A6Ijy3ifAlw3AZwfDfABNtlojHIvyxiQqmnxCJV64cfCuvcclEXLcMdtIE7uJ/PXR0Wd4uXPiZf3wtEUP95KAN+CTJ4nhRmPgu8wyXEvc2ItTxnBHt3I4wbxivILoJqV7kEErvsRHCPKbFBCejd4+p6Uc/i7IKce9aulsX9qk2e+eqT55kbJM6x8nxCXdpOCHXpjJAeFTtMDFf6qVfr8sJhGw81vF9+UWlwMy/crYcij+mhuGHadEpK092FV1pnKgOLdggHOptvjfDzNhbz/DGXz4TbtdmW9uRxRerhoPJngviBIpT4QjH9fcDOl17bkaBLJE7akDh51I0Mt8HK74Wiyx+exepl8PN17u6i3TL44m4OT4foOoTdrIPpkjT1zqonqF9f1tigArbkSUGlr59aYZj70t9mybzOez7umnk145N1jJN2jJN9YtxtA5ljT0k+Z6zk58v4LLxdvbR6vsT33Wa+ObRUsXu3zLb5leTGjHt5P2THXLEXLPlN7SE1V8yCgEqBscQBe5i0/DGxnixhvdwe6+W+YG1DtSs9X9Ea1QdabH0CqusSoMiyfbcuFT1tkwCd7tPiTXiYuG8OvID4QFEqxpjEnH7CBNPJ93KdfM/ayPfsMRNMaylUbS/9hkXZ9FJ8AhQbv2Y5XSIwapd7jHa05bej5IMtC9RovGhKX1o5S08xqO37QkolCd/kz/b7S5mNkM+WII/bQR7vFeTtGPvKLSOwJwM8h/z5Mn6dlxfZMEvDkd7eXf3tzMUS6nQz6sbubrovWUl31XrhdlW2AogVpCVcBJxypgiXbG+2gGPLJF23m/KmTbB7s0/JBAFrs1tdXTAvoKOI4IKC/KkvP1kMczr/Zkmwk3bubbJX7s18zwvaDDrNlaS+0o/g2m1B1vjyiFRBjCsQPMMYUnMifP6XdnDJEuz3LRzc+313cCtW2cBYQqKitJUJ0AfBpNozD/d+XTp/3sbDnT/qfrGNL34L/1enRyw9tmC6ny6fd+ZxvoSgaOcLi73yhYuukJLKFTakj4PZljEjNV8YfLaucDXk03UBr2wHubznt6AOsnkoZ/dbULi2ZWy5UuERDim/9InAVHKyaTvxcwR7ts56Q/tAXYvHHt3z+PsCd7uvA6yfFMSjete4wrz0JtAeU45vJjkMTD9xWxlZfFOCu4KCo87f3k+z8rvTN+gInZ3bE9NAk6W+o9O8fSco75X0mwfpm/N2Lw8WcZ4M5i/a2dfFZKcSefV8fxnmpXkYGxlj1y/ICQKrdtAI/V6z0QffowGs5v0AVup6Ud+Imx8XM22I+Rtkj+jv6MnL8G38y68/JvYF819Pn6E3v/32FEpclaP1dc+eofNG3W8cOLQFObrr51h3QS0pzBQ3wXRvAG/JUnpEMikYDyjwk26hojyqKFZCYEXA7jXiNjBZA2YJiP5TvM/L//Z/p90nZ9386e/0f9ubENtXE9o5DOYp3yfS12+ZUqmso2VewH3MiYRFeiAoaWlYfMGw5jQWzaZfsxQNarH87A9Sq9FdLM5rhRpwK2PjXwxj6iksuOQ+FYz6PpNu6xPiqlJM+IFPuVDSb0dZ3JXyCsj6IeJGpXYoxReDEpYqmHIGoVAyJhzJLmRA8ANwMeTBjBNB2qGU26P8/Ql9uskknziaTxcqtgMqvyCgmEuTu1JfMkWrHQEsAwEWyyAcKkFlO55qgefHgAKw3XBTXww3SEgVpoEMAsJ8370A2RUehcAJUdMPGPATqh03f4UdLgIra3BakPEfObXcOQDIF/U3N+AI4UfxwH2xoDysIK9U2KdEcZ+3CGontb9C0ACB6iUoG6AfkxwkCJfHY7jwNkyHRvIZenudIfscerFdstno8y4bmSRoPo+36+x/mzUbXklIv5ZCYXWmRMCABCzehFvFE8FhTS8DqlcBfstYpR/jq7F5GafD8qIGJbJQSgulxaoZ3+sllQfzXKtfaDcSDtw6mKktRdfcWAD1nYT6j7qg8iJGs7/BAUOohBdOsuK7Ao2sjKeFrqs3NKajsIVg77gf8dCCXc6SGWcYC8wxk5L51qWDRxc+eBifgq4KGrRclhK6IPLK3EGSIeqvUlntR0rwI1EbP+L6uoeg7+3hF+SpPJ+TQICPBqkq32U20lOCUCwYEZJwSda654P634TR59VfDvz+/1BLBwiWuiZtRg0AANZQAABQSwECFAAUAAgACABIVFdD9O2NMPETAADsEwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAEhUV0OmsUeSHQMAABINAAASAAAAAAAAAAAAAAAAADUUAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACABIVFdDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACSFwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAEhUV0OWuiZtRg0AANZQAAAMAAAAAAAAAAAAAAAAAPAXAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAACAQAAcCUAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
  
==Process (How to do the activity)==
+
===Process (How to do the activity)===
The teacher can explain the step by step construction of Direct common tangent  and with an example.<br>
+
The teacher can explain the step by step construction of Direct common tangent  and with an example.
==Developmental Questions (What discussion questions)==
+
* Developmental Questions (What discussion questions)
 
# What is a tangent
 
# What is a tangent
 
# What is a common tangent ?
 
# What is a common tangent ?
Line 42: Line 37:
 
# At what points is the tangent touching the circles ?
 
# At what points is the tangent touching the circles ?
 
# Identify the two right angled triangles formed from the figure ? What do you understand ?
 
# Identify the two right angled triangles formed from the figure ? What do you understand ?
==Evaluation (Questions for assessment of the child)==
+
* Evaluation Questions  
 
# Is the student able to comprehend the sequence of steps in constructing the tangent.
 
# Is the student able to comprehend the sequence of steps in constructing the tangent.
 
# Is the student able to identify error areas while constructing ?
 
# Is the student able to identify error areas while constructing ?
 
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
 
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
 
# Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
 
# Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
 
+
* Question Corner
==Question Corner==
 
 
# What do you think are the applications of tangent constructions ?
 
# What do you think are the applications of tangent constructions ?
 
# What is the formula to find the length of direct common tangent ?
 
# What is the formula to find the length of direct common tangent ?
Line 54: Line 48:
 
# Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
 
# Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
 
# What are properties of direct common tangents ?
 
# What are properties of direct common tangents ?
# [Note for  teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Examine with the help of following geogebra file made by Ranjani.
+
# [Note for  teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Examine with the help of following geogebra file made by Ranjani.__FORCETOC__
 
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAGBkhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZyVXCTgUzhtWKUcKS+4zdyvsunKzrDtn5b53FyHlbIvl54gctbmyWHJ2uSVlZRVy7VpU5CYsclvXOv+r/zzPzDzzzcz7vTPPPPN971MrC6NLzHzMdHR0l0yMDWxofSetBjJeoLVv9Z7TBmwaJgZ6tx6OrGD9ym+3X+lYFKtXTou+Xa0Xx/yVp+/ilqcMCMJ+K6mzNXrTRqyP7oW0oavpr8R2I2VT8VQm0z6fSP5UlEiqNQfgyF33Ol+uu2eRCkrhrW+KsnH31jG5Vi6YTFieRwas7ktp7I4F7+Rr+e0cDpXXIwaXzxgWWhmAdHN1C61ipDnbGWu9SUKUX3ZuvmbSnKIxAuohnZqH662IpcEK8sTjNeU1/EnzxyQIO7im+WjHibJcR8oh5qo6fVsexw1FnBztjpgySxgzHuys1BUzxyGXazoI3G4RhdfLrGLi1oe9CzBYjXDHWt2c3YnHlk6WhfRMZ2yX27ndlMInkK+V212jjkIPsBCaeWo8fFI5fDKyQdBFKHLLWrmd0xTNI8Ig/p8s+sKmNG1AlxjtgfJ48sA9660MDdwg2kveGiSAEoiKhzABQO2Mgj30EqJzYkbPFjispfUgZTzpaej4/vgu039QjPar396c9bC/0BrEE18UxQFrCXzEyuoWdVTvoScBm95tmHgE9E86X1lBDSA7eqEe6W0epXVLi5mVjxmOy1s6pDa9BpS005+Z4eav2676bm4fdNgAovhpuJLOeOQ/+itDwfcH+0U5VX/NXnzfKji49qFwrZEr4aniPeu1+WHVHaEWraEj2bluZd/toB5O2YN0kM7fSrzUPOuJ/mH+8fTLKzYsA81JzCkizzWHDhTCtYcOjtpKt1l3f587Xvt8cTkwLGSRekCKElAil0zyUmZMFos5TmxXp4Xv4meOgweHCoDFJJLk7v+97Kb77Qm8ezk2ed12nZJPYY10jbK049rNt+HCH90v2dFskHVDNEReuSLSiT/xIrzy/RL1FVN3t77kAE+hJrwFEvvzGSLXx4Z3cKoTD2c+yXCJdaYo12Pv9OZ+0NSOITgOPe7cDao8GRbW47r3riqW5kZRKWZvN2RUf1UGfn6krIwGv6sJVc7bqo3mYTOQlAa1r8Nz7k0CM0RuxxVwhq1P6UVunr6YyQhKqqA1LMSjpL9EIR4g7pnEroKwloD1H0ZAvTnaQrVHp7jFyfOqf1C+8L3LD/s3a7PY1eVJY1ZAcniGSIdumxTnj/B51rQ/VBPKhTg1I9L7yOjj8AllI1Le7fQCt2CdcFdDsvjYPi40jPSgh0ftdcNlAXy+rXzDY6z880kLUNFneAmRlRqaIZ3nhlrgvb83mbD6ml7mvwLzd1HrbZRxamzJQ9RIk96IuId/pV5fMB5/iMRRh3jxDQUBNtmP852iGnpX1e5h7cbghA86fIqhmSBgg6DOEJaEXvIMpYy2vPVz4TWhKIgO9O9UmheGhZG28azjlkw2Z724nygXa0ShOUmWuarGYsY0eJFdDZXAlqBINRJ5/iSoEYTPtnHzbpBt6I0a9SO44B6xavd8Xo144jw/SMQ2rI+2VPmVC6b3BuvgSOK+9EyRwo0FgJITvU3KIgtDI/kuqll9MUncB9UMMHjBnlNQRW8NiyPPA/U41V5RqaZs0Mu25hRKpkhSSln2qdnxie+PstuNxw6blBfWl6E6Ep1SBRGe3By1wtWP+5D2WP6LryudPw8cl3o90OoX3310PL9vsXUmAqN6b8yHTMz1LrMsuMcla++eH3WMrIs82HmjdgeKyRRRazlH9pgI6rnez5BkAjGC4DzT1l9KrERnfmZLXKrZkCGtmR+Sdg97kXmTvVe+OMCPp2JZCSP1fsSpr7HEvkJ9YuTuuPdcZRHBFJ035eFhwzbelfv+qzHY/7dC8Ijva8x0a0KuPP4QPLQdAlZnSWCrsIVLAlT8BmUp5NzAnIvyTX2AOdpv9bGYbCQc+XMDDNRjpqtwIOuBcswx4Pa02SRgZTVf2jOjCaMXl5Nbx96CveRAfCKUS6pj7q4oKrwOQeSj7M08d+JgGXBGUefIGO/8Ls4rfqX/+JzxdMxA3ogzCsQfhQVTiKqjJ0+Pddk+yGBiwcXYea2UEFecQk0rzFClEkq+mauyza4Le6I09cNSR1l1PCT9Nt+NjYbxMKd3ar/MaTd1XoMZayd01zpIc73l3GBlWHCvDH+FNNyr2bj7+ry3A1CiqsgvgYDGPGq0UEENfgwYJdBO5x5FKbZrJlSubbZxWGb3yOEIz+TsXJGltwUq0hyYbNg0t8CzumIDwwt0h5dCDT+80SlosZDyMVXnaDMFP1hQSP35zhdcxwkNgzH9Otj6YdnQAaxqAmw5eIJxe+utrMTtIbdJ1UbNvalY5XlVR/K1/6YYlxZGLNi+oUHXs25zmBnp5n6HvIQUlSywD3nlt6kLYuvZd5BphM7/NE0CYmT37GVRTTsjfgEM+JPjgyWy8QBsZ+2iHqOoYqNu3jmGy0rm5Gt08SLAmrnS+nMjRBt1+HCvoRLDyvM7Fmcd1ZLrLJCbx9CTiObkVKXJyF2sVlK3eYLk2UyV4Gdiz5Bzrg3+w7U5ma21zhLvCdoTqIOAOp/+q2baV700wpZvTGfhjeWelzu6g95W8YyasoGSu1OEfCJ0X3fWqgmMqFlSm4PlKSzaz4S07pJGa+HJR3l2iGanL49Cr6m9+THblR47ezVNAl64LVGA6s1TK816H3G40REpdrFjf3upguIG/cQf/OrNwFmVADHGK/oHLwW10tQDGLMtoUrvlsZI+VqjOcKi+Ku+nGZpmKA6epZPqF/vbvdvIve0FxiBd8qlt5sfh4Nf9PsdH1Kz3hzCDSeFXTYJrUoadLO5FkhJ6Kghm7rBsOjoqkqQOXC+Hx3kYq15tPUDcbi3QS5KlgMrevd+oLD+XoPCe4tlFarsW7JLxRJgWbvjDA0qptHmkvsPN7ukiLQI69+rviSr6NMnws/rp/oGGBCXIi1r+KMoqzs6rEb9PSUbprPZwgOmGDomAeiJyU+/M4qXjR8fHRCzQV4EtKg+QNk2jZCRCXUQUSTbpMnwUtohYNv8lCRn27rp8JL8wo9sebQQjqBuzoXFZIGdMAXyelmGgfKjXDF9b+BX7f7cnzH3XnEu9KNEo2V3ATfbrK6zK2rjKb0agwyJausgzOKyaJ30nUDzUqVOlsdCGH1+1AHWCbYzChkxMtSDzQUrUihwO3NYacSq3d3YTYurjKl3BpuKPB5OQQ95TKy6KQqVzft/c9SLa2BDD/t/o1t/1TrAyo4d3EBGHaV5Sn39kTrAKoKPezhGq+1VvrnSfoBoM9ZMV4enP/EwYkSdlGjnEFMS71WX1f+rvur+5TinBL/Kz5IbzkJJge97wOxCgyZSgidCdVdL3nqB50G7lbhV9dENHM6u5AInxCBoCf16PM6ZljO851W9l7etAWlmFevtkoqaUC1qiyjVpFIzYhfpa/acEJDPk2ywgZLJnd+HYgFi3FA7u5ef5/Mfg8PNhflV761uaCHsN/famFLvgjB1H9vjmLizv8ZGwTXswsNrVLRPDikrcZ68VheK4wmCU3TPhXW6WPhV/mZbhh2OlZcV5xac9OmzDqtkJrovhuO2jGKa9v9qK96f4g3tskVeRhSBEmrzkj9u43Eb369rCYaZIqjdANjuKj7X1oI3x6HZCvsCE58KHwmY7XyhfMJRzwfyNLUcf8KZddP1J7OevU+jR+sFDcdQCAoFvymLQPbc2Ef+jV7Jq2dxuDbgE0MnuVT7BEhBK7HKfdkaaB72fkD2MnOE/QETO76GMFM9sOgCN1/hOAarW7jZt+cEv4Vfa2dgogJ9viDY4ratHTIg5fegoy5F1j7bTBySWykI3FLv17ygm6IREkOHIRoaRi968yV0TuJEjcWK7JXs8ztT6FK5+a94tggEz6s9vHFsyFR0hdIp61vjoFtplmVx+WnE1bkXvK+dJ27K+2UsENJmVhvO68p80hZNT/gzdrDUyncG1CNedF401yOpPl6kkCGb20eEETIzT2xr7SLwIzJC3Qiv0pOnw/wxcAvHh7zpaiRNRnBHFqbkBcgE8UEjNF3tfCLn1YrcGQsnq0AQVaQvhVeRYCb/BZZ5QfHYfOojpMfsyKWuyvpta2aBiVE6HMMvzee4rVfbv9BfvEKgSrx09tRgMhrZzxfH1MmNGJAlzLLEewEdg6VUcI8hN1KpWqdDjJnZM4VPuZtF4Eafed6NmgprKd4u+B1B3p64J6MfuZKfBPx0LM9OHzKOcRfq/Gv/Qfy9I2WkD4R5+3iwPcv/KD1EDnujRIuqPes8D/KdbS6fhUOrxB2nc0P+VkqvzhY1fVC2xPP3WWRxbwhHpMc+S94hNqZgv3ffdfXQ7+FSz5YeqIY2dJmkqfn94QHPlHfAgtNz2z4j5CtClwbnXF1nPBcHSsPaDEAErMaQXF+5I8rYR+3miM/QYAS6ZLa4nM3zleAP9excnTQYaeC+p9fBJWkqPRGN6c2LF7d9bVHxnrvN48+P8Mr0LHyJ74TG6qdWQBEON1rpXHn3sjHLsZmTfpmfE5PN1vTnVxzGW+LXl5MpvE4TKzlWNcHSOHMftWRCyH2hO2mWtX5Dldocz1+k9uLuT397FYwVr2OtZXTwhg6ncDmbaXV3O59fd46wZRkezU+fSEw9AzsXV1IduKAN4ri2ok3MwljI4Qy+RwDDbgmAPONcXIWcJHLDhNXpkLJ77HscaQkTLJj3iCT2D+4Ga4kuNxWeHyrfRJ6H9BRa63u4qaMN0APmb3gY6eMk6XJlFENj1wslhOfzgp85ND18oGQ11b0cgzXvfOyd4T7rEXCnPMWwxxkaQvj+wGcd3DOF7EQbDADP+xh1RlPRCEh791wjIiQDDNYX2pmBko9Wmb969X6e7XrFlk3lYuDnuEYk+ZbRMo00Cw7WpoVZgODZle7NUHVGPjRLU7lkBmuRNv2ZHN5vsmKK2L316VYV+cP6IdcligcjDvAEqqZgWq0L8qu1AcLuxGTQ8bHiMAluGdIGLtX9Hc8EnXwGktgv2PQPO07ncWXyamCq5VD0yapdTN7fnlXLHWyQu1rv1dNcXwjlc1jBkKUbNewSmUSfHjioSKHz6HsD7aS6gIriN7Z/2q58lfzVBCi8S0ut+Ogwl2522zIG7M+N/AzJK1nSWKmoE8U4lBtvcpWlL1uG/rptd37J5TQvTPpm4AsX+ghhGuj3Cf/XPzjOklVdi9P0jweUiJlL0fwjvj2HMNnwwrpa70jr7Wcu3lJhdSqkVytsYQmp26y+Yoo2jWFSNdnwv/1/nDIOjvTaPWupsQyRI6HC6/40wYe61LWIyPDZ2jmiiY05EZlyQOifuhyL0wmk8Mfy6OubE8zxgNk4yELkb2YoXsI4a9cDyHmUJHJ8UN3jn0NTmLeE4JMJFVZ59+l9Zw+qryRxxIgQHwl/hFibxHz4e7oJzliE/M0skchAPGUp4HPKBaCAVTql+uDVvylvdd9T6x9dCo00G2sODS/mYVk62YMmhy7/W7hxujBen+0UA/APEHouL4SmaYuspDNEaBQN/sl0U7b/m/Q4k5KmTxjdXfxZx77Y0tGKCdTCoBLiHvM/UEsHCAoc/x5nEAAAdBAAAFBLAwQUAAgACABgZIRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAYGSEQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztXVlz27YWfm5/BUZ3pk8RjZ1ga7fjbG0ax0nrNL1zX+5QIiQxpkiFpLxk+uN7AJCyZEpy6NgKnYmdBCJxiOX7zgZQZPZ/uZgm6EznRZylBz3i4R7S6TCL4nR80JuXo77q/fLz9/tjnY31IA/RKMunYXnQ40Yyjg56ckSigRqF/VBw1eehT/oh8Xl/SHRARjjwA+33ELoo4h/T7Dic6mIWDvXJcKKn4VE2DEvb8aQsZz/u7Z2fn3t1V16Wj/fG44F3UUQ9BMNMi4Ne9eFHaG7lonNmxSnGZO+/r45c8/04LcowHeoeMlOYxz9//93+eZxG2Tk6j6NyAhOmCuYx0fF4ApPyBe2hPSM1A0RmeljGZ7qAa5cO7aTL6axnxcLU1H/nPqFkMZ8eiuKzONL5QQ97REgqeijLY52WlQCpOtqrm9g/i/W5a8t8st3wHiqzLBmEphn0zz+IYorRI1MQV1AopHRV2J3DzBXUFdwVwslwdzl3otzJcCfDWQ+dxUU8SPRBbxQmBeAWp6McOFscF+Vlou14qhNXUyaPYE5F/BGEob8eckDDwB/hRxzbv27OSxMkSz2W+bxlh3V3BEv1af3Rz+mPbZwe3TQ9uQVR1/8nzU8s9SfwI/vH/m30yGiLHt3x53Uo+U6muL9Xm8d+ZRGomBjZisVSTwtjIyxAIjCqTpAAe5A+aLZAJIDCpwgsABGBuIBDopA0pY+YDxUcMaSQkSMMWYMQCv7hvm1MIgGNmbM+2CEi0BFHgiFi7YgjsB5kbRHskjKQEAIJuMh0T6hpgknEJRwxhTiM0ZihT0CQwYVwDN1TxAhi5mLiIyqRNO0RbsxbKjN0aJIiiZEkpkGwZLBiZ8EgrxAzs5EVXHE6m5crEA2nUf2xzGYLLkAafNCVe3M+acX7fbefhAOdQEQ4MUwidBYmxhpsR6MsLVFNInXnxnk4m8TD4kSXJVxVoPfhWXgUlvriOUgXdd9WdpilxZs8K59kyXyaFggNswQvxpwlZOkzXYwaDthSBV+uEEsVcumzv7bfDGrQvNDQf5YXtXgYRS+MxJVbACRfp8nl41yHp7MsXp3G/p4NLvt6PkziKA7Td6CspheDC1rEGuum6lgjAlWPJMujk8sCVBhd/E/nmbEG31M+l0JI7jNFA4gel66KceoJFQhGpALHjaHFYhga46OBJwlnVEA3yseCgGVerq/jQcWUPltwFF7oq+mOc2PbSwcvisdZcnXKIvAknJXz3CYK4BpzM63DdJxoqyXWtiEKD08H2cWJUw/m2np7OYMj7EYwGFvkEXgHKmCa46ocuNLKmKEtpLCVwVYC1/oWR4t6AnMzErYcuNJKgQK7oVVTJfU0Ca67iQvr03CvspzaXxn1NzF9nsblUX1QxsPTaqrUXXA8nw70lRIZgaexy0BcarXaDbnHbvb3runi/qnOU51Uqg+Uz7N54Sx5ySoiPYyncOgqKuBCQ+pfMCZ3NtLjXFfyYWJTNQerrcXLSt04bZt6nmfTF+nZW9CYawPY36tHuV8M83hmNBMNIFyc6ivdi+IihGgTLV9nbBXQGJqoAoCUBi2w4nk5yXKbjIHzgdKYaKKnkIWh0iqh1eMF8oc2pzMQo2zwHvzfIkS6entg5wHVaxXSqm6YzCahyfuqSSfhpc5XYLDtvcqi6+AA9nYG4AtmNnEEwmdaO11xI4YPM2jQWt2KOwO8C3QBpmgS80sYiik/LumdnauxxBX/7c5eIwq0x8FkoZ1OwzRCqY3oT+J8mOjeVYgJscENhWTRYjYv64qha6xqooE+sBYPF+gOb0B/abab4Me3B//KO5QQuk4hJy+swZWVs7IffoujSNu0xXnPeKzTMxgpRA5Y4eBq/XSJXf/oY33mAtDp21OXpDr1kSxRA7Tn8QU6rOUPa6lDWq20DlnV5iHEur7l+BACXZ/WTegPqRt+4XyFid/xKB5ep3Ob/j/ulv7fRvuD3Wv/Y6f9pKH9URvtj75p/1rtV2vUP7i9+q/yeaLH5vx6d/a4QWi4ndCiaq2mLPyilF7ZBK5sQlY20ScL2G7F+zWo4+ksiYdxuYArMfb5Ii0hR9E2IjfzjFOtZyYNfJ2+zcO0MJtKTqZ2MZs5WzR8jbWhYy2Egq6zxifbyVv1hE9u5QnNWnjsioErPp88uXuH9qRCEu0h2oBRt3Fq+ptTW+vUGGk6NXlXTu0GA9ENSp+6imfOcuBfGFcbY3naGWPhnrDGAmWgsC8pIUwwZrbh7sB0tmHwrHMYgHKugiCCe3Agm5RN3+CNn7dRsOedAfd+F1c3Wu4GMH9tA+avnQHzfq21Rab3tIHooF2mN+hIpgehowHlpYFSWEi55wecUiUZxyIIuHqwSeBWOp816By1o3PUETq3s9kn+Kvhc5Pni27wfC/aeL4XnfF8ylNs+YdXxGLCAiV9TBWRPpzfmSN85nB+0QD4fTvLed8Ry+kTTxKKJQ0IJz7GPGBVqGHXgf9oNo0UFwGXMoALJBUPyY62KfzvD38/j/Ddr39/37Sdfdpm7Xv6be27du1LgjWLX0fz3e9ov3z4FkDJ7i3g5aYt7VkbC5h9s4D1N3T4mj1tR/Nd7P9s82nN/bwPbRj98I3RDT5N3q1P+5ScraL0ZYPSpF3OlnQkZ6tvU/iL2xT8K7xNcepYSzataI7arGiOOrOiIf4X2RmbOTRPGzC+chW33dJ+1Rlgj8Nji6stP7rynqP/0ab8N28TK/JvsWJtrKDr7mg787nPuz8fHKn5Jr9z3MY8jjtjHhAj5OqPtRbmKSUkUVgxIjmhXOzQKa1C3Uy5XreB+nXXocYeIZwpWNZJxYTyhfR3tm1VpUDHDYin7VKgaUdSoD5Zo7cW42vIEwsxFR6WgpFAMRxIzsmDzZa20vu6QW/ajt60I/Q22GXb2O1T3/MNuZIHvmQE++zB8nsEQ16/xzBtkFtsJ9fMfsFc0WR29cvUHbVcpjwqufkljBBG72nH+dYJddFg5Y2r+KNN7HpzEzu7C170OhGLWy7CJwEOhOLED+gdxa5toPzRmYBOibfmLhT1Ak4VDjAnQlHs7/B2/MslHVtRvrKdvy874u9hjdDE0jqF1btQAa3S08ADX2B+sXn0R1H5YB3+Jv+SOIrLBsV/tnEsf3bGhgh4chFQ+CWECsnNA8TGrzCPBAGjEmgnPMCYWoIlyAZSMpDGPheY3KFJbQ6xaQPs8P+kRZA10h0Jsy0zKA4GyCDCMuwHvh8EvGNh1iC7YZF40sYeTjpjD9djClsXZrnku44pJw2ABzfZQONLXuvM4AvtlK+EFcHWhhWqZLWOwB6XwvyyQKnAV40HIh9MWFnj5DbuAQxbOblhd5xcN3cBbkNKc+UetSIl6g4pHV273/oG1HBz6HnbJvS87UzoIaK6BcU9RRWnPpDkc2mfA9/dV7UtrGSh6CvA/tUG2L86AywTkMwq87YYCOGSSerCDcBNwRi4Uoozv1o5U08QiEo+5yCtwCPJHYB+egX5BpV+1wb5d51BfqHSsJJc0WmAfGcZ1PGm7xnothmU7kwGtSHCyrVfD+0LupPdui+2z/52077LqC3Do84yvJbfoOJXeRCoIXvyIaNWvv+13Ud5vcmCx235HXeG32aSzLaYMJXXNgLuaSfgi1H8btMyd9KW4klnKWbcX0cxdVbMmCeMCUvmYyW44A9383TNgmqji45bLajizpDbQf/cipCNBve+FSHvO0NIN62tFSfVm1gGzTjXgpFxV3YcbniYk2KPKSqVCDAlfqDuK6TdcrnwtkHCadtIdNod27i24yrBBa27kVc5LALMmXs/QUAEV5T6/oMNRVsTyncNjpO2HCed4fg6xXwbw33CICQJc4uPK0WEkOLBUtzGkU5aONLJN0f6mVu11dPPkwYNv7mKv9vsav3WmV0tVb33gXgE7MnnIgBmhEk97v3LN393BoSgAoGCH5GYCo6ZD6rH7gaDT3Hij5eUaHVJ0c6Fxx1x4GaPdAVKP6hcuKi+fLH6toSvbZfn6SY+p22D8rQzQZl4PqNYYPDewry5WNV3HlwUZtgDpiUOZIDBhYuH9AVZfTHLYWDm
 
4eDa+eiLEvJKqDjo/fBhnpU/PYOr52GpUTxCcYniAs2ywr5rHZUZWrz0FoU//Ifgn6I4h5Ehw7J5C26Yjg3F53E5geEjwMLikUdoaJ/6cV3YYa2qgxlHb3VQt9KG+n3OTh8Eub1CjOILHa1CWb15vNB5PLp6S7d7z7Ts1SxW1xdlmJdvjNNELtWTfrD0I2n14GGwcpqsPDSyzN3e8vuGzXH9f1b8/C9QSwcIy54KlpAMAABQYwAAUEsBAhQAFAAIAAgAYGSEQwoc/x5nEAAAdBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABgZIRDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACrEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGBkhEPLngqWkAwAAFBjAAAMAAAAAAAAAAAAAAAAAAkRAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA0x0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
==Activity Keywords==
 
#Geogebra
 
#Direct Common Tangent
 
 
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Circles_and_lines Back]
 

Revision as of 12:17, 8 May 2019

Objectives

Estimated Time

90 minutes

Prerequisites/Instructions, prior preparations, if any

  1. The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
  2. They should understand that a tangent is always perpendicular to the radius of the circle.
  3. They should know construction of a tangent to a given point.
  4. If the same straight line is a tangent to two or more circles, then it is called a common tangent.
  5. If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
  6. Note: In general,
  • The two circles are named as C1 and C2
  • The distance between the centre of two circles is 'd'
  • Radius of one circle is taken as 'R' and other as 'r'
  • The length of tangent is 't'

Materials/ Resources needed

  • Laptop, geogebra file, projector and a pointer.
  • Students' individual construction materials.

This geogebra file was created by Mallikarjun sudi of Yadgir.

Process (How to do the activity)

The teacher can explain the step by step construction of Direct common tangent and with an example.

  • Developmental Questions (What discussion questions)
  1. What is a tangent
  2. What is a common tangent ?
  3. What is a direct common tangent ?
  4. What is R and r ?
  5. What does the length OA represent here ?
  6. Why was a third circle constructed ?
  7. Let us try to construct direct common tangent without the third circle and see.
  8. What should be the radius of the third circle ?
  9. Why was OA bisected and semi circle constructed ?
  10. What were OB and OC extended ?
  11. What can you say about lines AB and AC ?
  12. Name the direct common tangents .
  13. At what points is the tangent touching the circles ?
  14. Identify the two right angled triangles formed from the figure ? What do you understand ?
  • Evaluation Questions
  1. Is the student able to comprehend the sequence of steps in constructing the tangent.
  2. Is the student able to identify error areas while constructing ?
  3. Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
  4. Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
  • Question Corner
  1. What do you think are the applications of tangent constructions ?
  2. What is the formula to find the length of direct common tangent ?
  3. Can a direct common tangent be drawn to two circles one inside the other ?
  4. Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
  5. What are properties of direct common tangents ?
  6. [Note for teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Examine with the help of following geogebra file made by Ranjani.