Changes

Jump to navigation Jump to search
Line 53: Line 53:  
Circles  <math>C_{1}</math>  and  <math>C_{2}</math>  touch internally at a point  A and AB is a chord of the circle<math>C_{1}</math>    intersecting  <math>C_{2}</math>  at P, Prove that  AP= PB.<br>
 
Circles  <math>C_{1}</math>  and  <math>C_{2}</math>  touch internally at a point  A and AB is a chord of the circle<math>C_{1}</math>    intersecting  <math>C_{2}</math>  at P, Prove that  AP= PB.<br>
 
[[Image:problem 3 on circle.png|300px]]
 
[[Image:problem 3 on circle.png|300px]]
Concepts used
+
==Concepts used==
 
1.  The radii of a circle are equal
 
1.  The radii of a circle are equal
 
2.Properties of isosceles  triangle.
 
2.Properties of isosceles  triangle.
 
3.SAS postulate
 
3.SAS postulate
 
4.Properties of  congruent  triangles.  
 
4.Properties of  congruent  triangles.  
Prerequisite  knowledge
+
==Prerequisite  knowledge==
 
1. The radii of a circle are equal.
 
1. The radii of a circle are equal.
 
2. In an isosceles triangle  angles opposite to equal sides  are equal.
 
2. In an isosceles triangle  angles opposite to equal sides  are equal.
 
3.All the elements of congruent triangles  are  equal.
 
3.All the elements of congruent triangles  are  equal.
 +
==Algoritham==
 +
In ∆AOB
 +
AO=BO  [Radii of a same circle]
 +
∴ ∠OAB = ∠OBA --------------I [∆AOB is an isosceles ∆}
 +
Then,
 +
        In ∆AOP and ∆BOP,
 +
AO = BO  [Radii of a same circle]
 +
OP=OP  [common side]
 +
∠OAP = ∠OBP    [ from I]
 +
∴ ∆AOP ≅ ∆BOP [SAS postulate] 
 +
∴  AP = BP [corresponding sides of congruent triangles ]
45

edits

Navigation menu