"ವೃತ್ತಗಳು" ಆವೃತ್ತಿಗಳ ಮಧ್ಯದ ಬದಲಾವಣೆಗಳು
(+ವರ್ಗ:ತರಗತಿ ೯; +ವರ್ಗ:ತರಗತಿ ೧೦ using HotCat) |
|||
(ಅದೇ ಬಳಕೆದಾರನ ೧೫ ಮಧ್ಯದ ಬದಲಾವಣೆಗಳನ್ನು ತೋರಿಸುತ್ತಿಲ್ಲ) | |||
೨೪ ನೇ ಸಾಲು: | ೨೪ ನೇ ಸಾಲು: | ||
== <big>ಪರಿಚಯ</big> == | == <big>ಪರಿಚಯ</big> == | ||
− | ಕೆಳಗಿನವು ಶಿಕ್ಷಕರಿಗೆ ಹಿನ್ನೆಲೆ ಸಾಹಿತ್ಯವಾಗಿದೆ. ಈ ವಿಷಯವನ್ನು ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಕಲಿಸಲು ಶಿಕ್ಷಕರಿಗೆ ತಿಳಿದಿರಬೇಕಾದ ವಿಷಯಗಳನ್ನು ಇದು ಸಂಕ್ಷಿಪ್ತಗೊಳಿಸುತ್ತದೆ. ಈ ಸಾಹಿತ್ಯವು ಶಿಕ್ಷಕರಿಗೆ ಪರಿಕಲ್ಪನೆಗಳನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಲು, ಅಗತ್ಯ ಕೌಶಲ್ಯಗಳನ್ನು ಬೆಳೆಸಲು ಮತ್ತು | + | ಕೆಳಗಿನವು ಶಿಕ್ಷಕರಿಗೆ ಹಿನ್ನೆಲೆ ಸಾಹಿತ್ಯವಾಗಿದೆ. ಈ ವಿಷಯವನ್ನು ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಕಲಿಸಲು ಶಿಕ್ಷಕರಿಗೆ ತಿಳಿದಿರಬೇಕಾದ ವಿಷಯಗಳನ್ನು ಇದು ಸಂಕ್ಷಿಪ್ತಗೊಳಿಸುತ್ತದೆ. ಈ ಸಾಹಿತ್ಯವು ಶಿಕ್ಷಕರಿಗೆ ಪರಿಕಲ್ಪನೆಗಳನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಲು, ಅಗತ್ಯ ಕೌಶಲ್ಯಗಳನ್ನು ಬೆಳೆಸಲು ಮತ್ತು ರೇಖಾಗಣಿತದಲ್ಲಿ ಜ್ಞಾನವನ್ನು ನೀಡಲು ಸಿದ್ಧ ಉಲ್ಲೇಖವಾಗಿದೆ - 6 ನೇ ತರಗತಿಯಿಂದ 10 ನೇ ತರಗತಿಯವರೆಗೆ. |
− | + | ರೇಖಾಗಣಿತದ ಶಬ್ದಕೋಶವನ್ನು ಬಳಸಿಕೊಂಡು ವೃತ್ತಗಳು ಮತ್ತು ಅದಕ್ಕೆ ಸಂಬಂಧಿತ ಪದಗಳನ್ನು ಹೇಗೆ ವ್ಯಾಖ್ಯಾನಿಸುವುದು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಮೊದಲ ಹಂತವಾಗಿದೆ. ಮುಂದಿನ ಹಂತವೆಂದರೆ ಪೈ ಎಂದರೇನು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ಅದು ಸ್ಥಿರವಾಗಿರುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ವೃತ್ತಕ್ಕೆ ವ್ಯಾಸದ ಸುತ್ತಳತೆಯ ಅನುಪಾತವು ಯಾವಾಗಲೂ ಸ್ಥಿರ ಮೌಲ್ಯ ಪೈ ಆಗಿರುತ್ತದೆ. ಪೈ ನ ಆಸಕ್ತಿದಾಯಕ ಗುಣಲಕ್ಷಣಗಳು - ಅಭಾಗಲಬ್ಧ ಸಂಖ್ಯೆಯನ್ನು ಸಹ ಮೂಲ ರೂಪದಲ್ಲಿ ಚರ್ಚಿಸಬಹುದು. ಮಗುವಿಗೆ ಸರಳ ವಿಸ್ತೀರ್ಣ ಮತ್ತು ಪರಿಧಿಯ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡುವ ಸಾಮರ್ಥ್ಯ. ಮುಂದೆ ಕಲಿಯುವವರು ವೃತ್ತವು 2 ಆಯಾಮದ ಸಮತಲ ಆಕೃತಿ ಮತ್ತು 3 ಆಯಾಮದ ಆಕೃತಿಯನ್ನು ಹೇಗೆ ದೃಶ್ಯೀಕರಿಸುವುದು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬೇಕು. ಅವುಗಳ ಭಾಗವಾಗಿ ವೃತ್ತವನ್ನು ಹೊಂದಿರುವ ಘನ ಆಕಾರಗಳು ಯಾವುವು. ಕ್ಷೇತ್ರಗಣಿತ - ವೃತ್ತಾಕಾರದ ಆಕಾರಗಳನ್ನು ಒಳಗೊಂಡಿರುವ ಹೆಚ್ಚು ಸಂಕೀರ್ಣ ವಿಸ್ತೀರ್ಣದ ಅಳತೆಗಳು. ಸಿಲಿಂಡರ್, ಗೋಳ ಮತ್ತು ಶಂಕುವಿನಂತಹ ಘನ ಆಕೃತಿಗಳ ಮೇಲ್ಮೈ ವಿಸ್ತೀರ್ಣ ಮತ್ತು ಘನಫಲ. ಪ್ರಮೇಯಗಳನ್ನು ನಿಗಮನವಾಗಿ ಸಾಬೀತುಪಡಿಸುವ ಮೂಲಕ ವೃತ್ತಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ನಿಗಮನ ಪುರಾವೆಗಳ ಕೌಶಲ್ಯಗಳನ್ನು ಸಹ ಪಡೆದುಕೊಳ್ಳುವುದು, ಎಲ್ಲಾ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಮೂಲತತ್ವಗಳಿಂದ ಬರುವುದೆಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ರೇಖೆಗಳು ಮತ್ತು ವೃತ್ತಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು - ವೃತ್ತ ಛೇದಕ ಮತ್ತು ಸ್ಪರ್ಶಕ | |
=ಪಠ್ಯಪುಸ್ತಕ = | =ಪಠ್ಯಪುಸ್ತಕ = | ||
೪೧ ನೇ ಸಾಲು: | ೪೧ ನೇ ಸಾಲು: | ||
* ಪುಸ್ತಕಗಳು ಮತ್ತು ನಿಯತಕಾಲಿಕಗಳು | * ಪುಸ್ತಕಗಳು ಮತ್ತು ನಿಯತಕಾಲಿಕಗಳು | ||
* ಪಠ್ಯಪುಸ್ತಕಗಳು | * ಪಠ್ಯಪುಸ್ತಕಗಳು | ||
− | * ಎನ್ಸಿಇಆರ್ಟಿ ಪಠ್ಯಪುಸ್ತಕಗಳು - [1] 9 ನೇ ತರಗತಿ ಗಣಿತ ಭಾಗ-೧ ಗಣಿತ ಭಾಗ-೨ | + | * ಎನ್ಸಿಇಆರ್ಟಿ ಪಠ್ಯಪುಸ್ತಕಗಳು - [1] 9 ನೇ ತರಗತಿ ಗಣಿತ ಭಾಗ-೧ ಮತ್ತು ೧೦ ನೇ ತರಗತಿ ಗಣಿತ ಭಾಗ-೨ |
* ಪಠ್ಯಕ್ರಮದ ದಾಖಲೆಗಳು | * ಪಠ್ಯಕ್ರಮದ ದಾಖಲೆಗಳು | ||
೭೮ ನೇ ಸಾಲು: | ೭೮ ನೇ ಸಾಲು: | ||
== ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು == | == ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು == | ||
− | ನಮ್ಮ ಸುತ್ತಲೂ ನಾವು ನೋಡುವ ಎಲ್ಲದರ ಆವಿಷ್ಕಾರದಲ್ಲಿ ಒಂದು | + | * ನಮ್ಮ ಸುತ್ತಲೂ ನಾವು ನೋಡುವ ಎಲ್ಲದರ ಆವಿಷ್ಕಾರದಲ್ಲಿ ಒಂದು ಸಂಕೀರ್ಣ ಅಂಶವಾಗಿರುವುವ ವೃತ್ತವನ್ನು ಒಂದು ಪ್ರಮುಖ ಆಕಾರವೆಂದು ಪ್ರಶಂಸಿಸುವುದು. |
− | + | * ವೃತ್ತವು 2 ಆಯಾಮದ ವೃತ್ತಾಕಾರದ ಸಮತಲ ಆಕೃತಿ ಎಂದು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸಲು. | |
− | + | * ವೃತ್ತದ ಅಂಚಿನಲ್ಲಿರುವ ಎಲ್ಲಾ ಬಿಂದುಗಳು ಕೇಂದ್ರದಿಂದ ಸಮವಾಗಿರುತ್ತವೆ. | |
− | + | * ವೃತ್ತವನ್ನು ಎಳೆಯುವ ವಿಧಾನ | |
− | + | * ವೃತ್ತದ ಗಾತ್ರವನ್ನು ಅದರ ತ್ರಿಜ್ಯದಿಂದ ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ. | |
− | + | * ಬಳೆ ಅಥವಾ ವೃತ್ತಾಕಾರದ ಉಂಗುರ ಮತ್ತು ವೃತ್ತದ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಹೊರಹೊಮ್ಮಿಸಲು. | |
− | ವೃತ್ತವನ್ನು | ||
− | |||
− | ವೃತ್ತದ ಗಾತ್ರವನ್ನು ಅದರ ತ್ರಿಜ್ಯದಿಂದ ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ. | ||
− | |||
− | ಬಳೆ ಅಥವಾ ವೃತ್ತಾಕಾರದ ಉಂಗುರ ಮತ್ತು ವೃತ್ತದ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಹೊರಹೊಮ್ಮಿಸಲು. | ||
=ಬೋಧನೆಯ ರೂಪರೇಶಗಳು = | =ಬೋಧನೆಯ ರೂಪರೇಶಗಳು = | ||
==ಪರಿಕಲ್ಪನೆ #1 ವೃತ್ತದ ಪರಿಚಯ== | ==ಪರಿಕಲ್ಪನೆ #1 ವೃತ್ತದ ಪರಿಚಯ== | ||
− | + | ವೃತ್ತಗಳು ಎಲ್ಲಾ ಆವಿಷ್ಕಾರಗಳ ತಾಯಿ ಎಂದು ನಾನು ಜನರಿಗೆ ಹೇಳಿದಾಗ, ಅವರು ಕೇಳುವ ಮೊದಲನೆಯದು, “ವೃತ್ತಗಳು ಆವಿಷ್ಕಾರಗಳೇ?” | |
− | ಹೌದು, | + | ಹೌದು, ವೃತ್ತವು ಪ್ರಕೃತಿಯಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಜನರು ಚಿನ್ನ ಅಥವಾ ಅಮೆರಿಕದ ಹೊಸ ಭೂಮಿಯನ್ನು ಕಂಡುಹಿಡಿದ ವಿಷಯವಲ್ಲ. ಇದು ಮಾನಸಿಕ ರಚನೆಯಾಗಿದೆ, ಇದು ಸಾಂಕೇತಿಕ ಪ್ರಾತಿನಿಧ್ಯವಾಗಿದ್ದು ಅದು ಭಾಷೆ ಮತ್ತು ವರ್ಣಮಾಲೆಯಂತೆಯೇ ಆವಿಷ್ಕರಿಸಲ್ಪಟ್ಟಿದೆ. |
− | ಖಚಿತವಾಗಿ ಹೇಳಲು ಯಾವುದೇ ಮಾರ್ಗವಿಲ್ಲ, ಆದರೆ ಮಾನವಶಾಸ್ತ್ರಜ್ಞರು ಸಾಮಾನ್ಯವಾಗಿ ಈ ವೃತ್ತವನ್ನು ದಾಖಲಿಸಿದ ಇತಿಹಾಸಕ್ಕಿಂತ ಬಹಳ ಹಿಂದೆಯೇ ರಚಿಸಲಾಗಿದೆ ಎಂದು ಒಪ್ಪುತ್ತಾರೆ. ಇದು | + | ಖಚಿತವಾಗಿ ಹೇಳಲು ಯಾವುದೇ ಮಾರ್ಗವಿಲ್ಲ, ಆದರೆ ಮಾನವಶಾಸ್ತ್ರಜ್ಞರು ಸಾಮಾನ್ಯವಾಗಿ ಈ ವೃತ್ತವನ್ನು ದಾಖಲಿಸಿದ ಇತಿಹಾಸಕ್ಕಿಂತ ಬಹಳ ಹಿಂದೆಯೇ ರಚಿಸಲಾಗಿದೆ ಎಂದು ಒಪ್ಪುತ್ತಾರೆ. ಇದು ಮರಳಿನಲ್ಲಿ ಕೋಲಿನಿಂದ ಚಿತ್ರಿಸಲ್ಪಟ್ಟಿದೆ. ಆರಂಭಿಕ ಮನುಷ್ಯನ ಅಸ್ತಿತ್ವದಲ್ಲಿ ಸೂರ್ಯನು ಸ್ಥಿರವಾಗಿರುವುದರಿಂದ ಮತ್ತು ಎಲ್ಲಾ ಜೀವನದ ಮೂಲವಾಗಿರುವುದರಿಂದ, ಮೊದಲ ವೃತ್ತವು ಸೂರ್ಯನನ್ನು ಪ್ರತಿನಿಧಿಸುವ ಸಾಧ್ಯತೆಯಿದೆ. |
− | ವರ್ಷಗಳಲ್ಲಿ ಯುಕ್ಲಿಡಿಯನ್ | + | ವರ್ಷಗಳಲ್ಲಿ ಯುಕ್ಲಿಡಿಯನ್ ರೇಖಾಗಣಿತವು ತಾಂತ್ರಿಕ ತಿಳುವಳಿಕೆಯ ಕಿರೀಟ ಬಿಂದುವಾಗಿರುವುದರಿಂದ ವೃತ್ತದ ಬಗ್ಗೆ ಮನುಷ್ಯನ ತಿಳುವಳಿಕೆ ಗಣನೀಯವಾಗಿ ಪ್ರಕಟವಾಯಿತು(ಹೊರಹೊಮ್ಮಿತು). (ಇದನ್ನು ಹೇಳಿದ ನಂತರ, ಈ ಪುಟವು (blog) ಗಣಿತ ಅಥವಾ ನೀರಸ ವೈಜ್ಞಾನಿಕ ಸಮೀಕರಣಗಳ ಬಗ್ಗೆ ಆಗುವುದಿಲ್ಲ ಎಂದು ನಾನು ನಿಮಗೆ ಭರವಸೆ ನೀಡುತ್ತೇನೆ.) |
− | ನಾವು ಏನು ಹೇಳುತ್ತೇವೆ ಎಂದರೆ | + | ನಾವು ಏನು ಹೇಳುತ್ತೇವೆ ಎಂದರೆ ವೃತ್ತಗಳ ಬಗ್ಗೆ ಮೂಲಭೂತ ತಿಳುವಳಿಕೆಯಿಲ್ಲದಿದ್ದರೆ , ಜಗತ್ತು ಇಂದಿನಂತೆ ಇರುತ್ತಿರಲಿಲ್ಲ. ವೃತ್ತಗಳಿಲ್ಲದಿದ್ದರೆ, ಯಾವುದೇ ಚಕ್ರ ಇರುವುದಿಲ್ಲ, ಇದು ನವಶಿಲಾಯುಗದ (ಕ್ರಿ.ಪೂ. 9500) ಹಿಂದಿನ ಮನುಷ್ಯನ ಕಿರೀಟ ಸಾಧನೆಯಾಗಿದೆ. |
− | ಬೆಂಕಿಯನ್ನು ತಯಾರಿಸುವ ಸಾಮರ್ಥ್ಯ, ಬೆಳೆಗಳ ಕೃಷಿ ಮತ್ತು ಪ್ರಾಣಿಗಳ | + | ಬೆಂಕಿಯನ್ನು ತಯಾರಿಸುವ ಸಾಮರ್ಥ್ಯ, ಬೆಳೆಗಳ ಕೃಷಿ ಮತ್ತು ಪ್ರಾಣಿಗಳ ಸಾಕುವಿಕೆ ಇತರ ಮೂರು ದೊಡ್ಡ ಸಾಧನೆಗಳು. ಈ ಪ್ರಗತಿಯ ಮೇಲೆ ವೃತ್ತವು ಯಾವುದೇ ನೇರ ಪ್ರಭಾವವನ್ನು ಹೊಂದಿಲ್ಲವಾದರೂ, ವೃತ್ತಗಳ ತಿಳುವಳಿಕೆ ಅವುಗಳ ಪ್ರಸರಣ ಮತ್ತು ವಿಸ್ತರಣೆಗೆ ಖಂಡಿತವಾಗಿಯೂ ಕಾರಣವಾಗಿದೆ. |
− | ಚಕ್ರದ ಹೊರತಾಗಿ, | + | ಚಕ್ರದ ಹೊರತಾಗಿ, ರಾಟೆಗಳು, ಗೇರುಗಳು, ಹೊರಳುಗುಂಡುಗಳು ಮತ್ತು ನಾವು ತೆಗೆದುಕೊಳ್ಳುವ ಸಾವಿರ ಇತರ ವಸ್ತುಗಳು ಅಸ್ತಿತ್ವದಲ್ಲಿರಲಿಲ್ಲ. ಮತ್ತು ಕಾರನ್ನು ಓಡಿಸುವ, ಫೆರ್ರಿಸ್ ಚಕ್ರ ಸವಾರಿ ಮಾಡುವ ಅಥವಾ ನಮ್ಮ ಟೆಲಿವಿಷನ್ ಸೆಟ್ನಲ್ಲಿ ಚಂದ್ರ ಇಳಿಯುವುದನ್ನು ನೋಡುವ ಆನಂದ ನಮಗೆ ಎಂದಿಗೂ ಇರುವುತ್ತಿರಲಿಲ್ಲ. |
− | ನೀವು ಯಾವುದೇ ಹಳೆಯ | + | ನೀವು ಯಾವುದೇ ಹಳೆಯ ಹಕ್ಕಿನ ಪತ್ರದ (patent claim) ಮೂಲಕ ನೋಡಿದರೆ, ವೃತ್ತಗಳು, ಗೋಳಗಳು, ವಕ್ರಾಕೃತಿಗಳು, ಕಮಾನುಗಳು ಇತ್ಯಾದಿಗಳ ಪುನರಾವರ್ತಿತ ಬಳಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಾಗಿ ಕಾಣಬಹುದು. ನಮ್ಮ ಸುತ್ತಲೂ ನಾವು ನೋಡುವ ಬಹುತೇಕ ಎಲ್ಲದರ ಆವಿಷ್ಕಾರದಲ್ಲಿ ಅವು ಒಂದು ಆಂತರಿಕ ಅಂಶವಾಗಿದೆ. |
− | ಅವರ ಕ್ಷೇತ್ರವು | + | ಸೂಕ್ಷ್ಮ ಜೀವಶಾಸ್ತ್ರಜ್ಞರು ಅವರ ಕ್ಷೇತ್ರವು ವೃತ್ತಗಳಿಗೆ ಹೆಚ್ಚು ಉಪಯೋಗವನ್ನು ಹೊಂದಿಲ್ಲ ಎಂದು ನನಗೆ ಸವಾಲು ಹಾಕಿದ್ದರು. ಸೂಕ್ಷ್ಮ ಜೀವವಿಜ್ಞಾನದ ಬಗ್ಗೆ ಏನೂ ತಿಳಿಯದೆ, ಅವನ ಸೂಕ್ಷ್ಮದರ್ಶಕದಲ್ಲಿ ಮಸೂರದ ಆಕಾರ ಏನು ಎಂದು ನಾನು ಕೇಳಿದೆ.ಗ |
− | ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು | + | ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ವಿನ್ಯಾಸಕರರ ಮೂಲ ಸಾಧನವಾಗಿದೆ. ಇದನ್ನು ಮಾನವಕುಲದ ಇತಿಹಾಸದಲ್ಲಿ ಶ್ರೇಷ್ಠ ಕಲಾವಿದರು ಮತ್ತು ವಾಸ್ತುಶಿಲ್ಪಿಗಳು ಬಳಸುತ್ತಾರೆ. |
− | ಮತ್ತು ಇದು ನಮ್ಮ ಮಾನಸಿಕ ರಚನೆಯನ್ನು ಹೊರತುಪಡಿಸಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಸಂಕೇತ, ಒಂದು ವಿಷಯವಲ್ಲ. ನಾವು ಭೂಮಿಯ | + | ಮತ್ತು ಇದು ನಮ್ಮ ಮಾನಸಿಕ ರಚನೆಯನ್ನು ಹೊರತುಪಡಿಸಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಸಂಕೇತ, ಒಂದು ವಿಷಯವಲ್ಲ. ನಾವು ಭೂಮಿಯ ಮೇಲೆ ಪ್ರತಿಯೊಂದು ಭಾಷೆಯಲ್ಲೂ ಅದರ ಬಗ್ಗೆ ಮಾತನಾಡುತ್ತೇವೆ. ಇದನ್ನು ಲಕ್ಷಾಂತರ ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿ ಮತ್ತು ಅಂತರ್ಜಾಲದಾದ್ಯಂತ ಬರೆಯಲಾಗಿದೆ, ಆದರೆ ನಾವು ಅದನ್ನು ಚಕ್ರದ ಕೊಳವೆಯಲ್ಲಿ (wheel barrel)ಹಾಕಲು ಸಾಧ್ಯವಿಲ್ಲ. ಇದು ಮೂರು ಆಯಾಮದ ಜಗತ್ತಿನಲ್ಲಿ ಅಥವಾ ಎರಡು ಆಯಾಮದ ಜಗತ್ತಿನಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಕೇವಲ ಪ್ರಾತಿನಿಧ್ಯವಾಗಿದೆ. |
− | ಇಮ್ಯಾನ್ಯುಯೆಲ್ ಕಾಂಟ್ ಅವರ ಪ್ರಸಿದ್ಧ ನುಡಿಗಟ್ಟು “ಡಿಂಗ್ ಎ ಸಿಚ್” | + | ಇಮ್ಯಾನ್ಯುಯೆಲ್ ಕಾಂಟ್ ಅವರ ಪ್ರಸಿದ್ಧ ನುಡಿಗಟ್ಟು “ಡಿಂಗ್ ಎ ಸಿಚ್” (“ding an sich” )ವೃತ್ತಕ್ಕೆ ಅನ್ವಯಿಸುತ್ತದೆ. ವೃತ್ತವು "ಸ್ವತಃ ವಿಷಯ"( “thing-in-itself”) ಅಲ್ಲ. ಇದು ನಮ್ಮ ಕಲ್ಪನೆಯಲ್ಲಿ ಮಾತ್ರ ಇರುವ ಒಂದು ಶಬ್ದಾರ್ಥದ ಕಟ್ಟುಕಥೆ. ಜನರಲ್ ಸೆಮ್ಯಾಂಟಿಕ್ಸ್ನ ತಂದೆ ಆಲ್ಫ್ರೆಡ್ ಕೊರ್ಜಿಬ್ಸ್ಕಿ ಹೇಳುವಂತೆ, ಇದು “ನಕ್ಷೆ, ಪ್ರದೇಶವಲ್ಲ.” |
− | ಆದರೆ ಇಲ್ಲಿ ನಾವು ಭವಿಷ್ಯದ ಬ್ಲಾಗ್ ಪ್ರವೇಶಕ್ಕೆ ಒಳಪಡಬಹುದಾದ ತಾತ್ವಿಕ ಸ್ಪರ್ಶಕದಿಂದ ಹೊರಬರುತ್ತಿದ್ದೇವೆ. ಇದೀಗ | + | ಆದರೆ ಇಲ್ಲಿ ನಾವು ಭವಿಷ್ಯದ ಪುಟ (blog-ಬ್ಲಾಗ್) ಪ್ರವೇಶಕ್ಕೆ ಒಳಪಡಬಹುದಾದ ತಾತ್ವಿಕ ಸ್ಪರ್ಶಕದಿಂದ ಹೊರಬರುತ್ತಿದ್ದೇವೆ. ಇದೀಗ ಎಲ್ಲವೂ ವೃತ್ತಗಳು ಮತ್ತು ಅವು ಏನೂ ಅಲ್ಲ ಎಂದು ಹೇಳೋಣ. ಅವು ವಾಸ್ತವದಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ ಮತ್ತು ಇನ್ನೂ ಮಾನವಕುಲವು ಅಸ್ತಿತ್ವಕ್ಕೆ ತಂದ ಎಲ್ಲದಕ್ಕೂ ಅವು ಆಧಾರವಾಗಿವೆ. ಅದಕ್ಕಾಗಿಯೇ ವೃತ್ತವು ತುಂಬಾ ಅದ್ಭುತವಾಗಿದೆ ಎಂದು ನಾನು ಭಾವಿಸುತ್ತೇನೆ. |
− | ಮೂಲ: | + | ಮೂಲ: http://circlesonly.wordpress.com/tag/inventions/ |
− | ಸಾರಾಂಶ: ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು | + | ಸಾರಾಂಶ: ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ವಿನ್ಯಾಸಕರರ ಮೂಲ ಸಾಧನವಾಗಿದೆ. ಇದನ್ನು ಮಾನವಕುಲದ ಇತಿಹಾಸದಲ್ಲಿ ಶ್ರೇಷ್ಠ ಕಲಾವಿದರು ಮತ್ತು ವಾಸ್ತುಶಿಲ್ಪಿಗಳು ಬಳಸುತ್ತಾರೆ. ವೃತ್ತಾಕಾರದ ಆಕಾರವಿಲ್ಲದೆ ಚಕ್ರ, ರಾಟೆಗಳು, ಗೇರುಗಳು, ಹೊರಳುಗುಂಡುಗಳು ಮತ್ತು ನಾವು ತೆಗೆದುಕೊಳ್ಳುವ ಸಾವಿರ ಇತರ ವಸ್ತುಗಳು ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಮತ್ತು ಖಂಡಿತವಾಗಿಯೂ ನಾವು ಕಾರನ್ನು ಓಡಿಸುವ, ದೈತ್ಯ ಚಕ್ರವನ್ನು ಸವಾರಿ ಮಾಡುವ ಅಥವಾ ನಮ್ಮ ಟೆಲಿವಿಷನ್ ಸೆಟ್ನಲ್ಲಿ ಚಂದ್ರ ಇಳಿಯುವುದನ್ನು ನೋಡುವ ಆನಂದವನ್ನು ಎಂದಿಗೂ ಹೊಂದಿರುವುದಿಲ್ಲ. |
− | ನೀವು ಯಾವುದೇ ಹಳೆಯ | + | ನೀವು ಯಾವುದೇ ಹಳೆಯ ಹಕ್ಕಿನ ಪತ್ರದ (patent claim) ಮೂಲಕ ನೋಡಿದರೆ, ವೃತ್ತಗಳು, ಗೋಳಗಳು, ವಕ್ರಾಕೃತಿಗಳು, ಕಮಾನುಗಳು ಇತ್ಯಾದಿಗಳ ಪುನರಾವರ್ತಿತ ಬಳಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಾಗಿ ಕಾಣಬಹುದು. ಎಲ್ಲವೂ ವೃತ್ತಗಳು ಮತ್ತು ಅವು ಏನೂ ಅಲ್ಲ. ಅವು ವಾಸ್ತವದಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ ಮತ್ತು ಇನ್ನೂ ಮಾನವಕುಲವು ಅಸ್ತಿತ್ವಕ್ಕೆ ತಂದ ಎಲ್ಲದಕ್ಕೂ ಅವು ಆಧಾರವಾಗಿವೆ. ಅದಕ್ಕಾಗಿಯೇ ಒಂದು ವೃತ್ತವು ತುಂಬಾ ಅದ್ಭುತವಾಗಿದೆ. |
− | + | '''ವೃತ್ತದ ಗುಣಲಕ್ಷಣಗಳು''' | |
− | * ವೃತ್ತವು ಸಮತಲದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಸಂಗ್ರಹವಾಗಿದೆ, ಅವು ಸಮತಲದ ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ | + | * ವೃತ್ತವು ಸಮತಲದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಸಂಗ್ರಹವಾಗಿದೆ, ಅವು ಸಮತಲದ ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ ಸಮದೂರದಲ್ಲಿರುತ್ತವೆ. |
− | * ವೃತ್ತದ | + | * ವೃತ್ತದ ಸಮ ಜ್ಯಾಗಳು (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಸಮವಾದ ಕೇಂದ್ರ ಕೋನಗಳನ್ನು ರೂಪಿಸುತ್ತವೆ. |
− | * | + | * ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ (ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಎರಡು ಜ್ಯಾಗಳಿಂದ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಉಂಟಾದ ಕೋನಗಳು ಸಮವಾಗಿದ್ದರೆ, ಖಂಡಗಳು ಸಮವಾಗಿರುತ್ತದೆ. |
− | * ವೃತ್ತದ | + | * ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಜ್ಯಾ ಗೆ ಎಳೆದ ಲಂಬವು ಜ್ಯಾವನ್ನು ಅರ್ಧಿಸುತ್ತದೆ. |
− | * | + | * ಜ್ಯಾ ವನ್ನು ಅರ್ಧಿಸಲು ವೃತ್ತದ ಕೇಂದ್ರದ ಮೂಲಕ ಎಳೆಯುವ ರೇಖೆಯು ಜ್ಯಾ ಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ. |
− | * ಮೂರು | + | * ಮೂರು ಸರಳಾರೇಖಾಗತವಲ್ಲದ ಬಿಂದುಗಳ ಮೂಲಕ ಹಾದುಹೋಗುವಂತೆ ಒಂದು ಮತ್ತು ಒಂದೇ ಒಂದು ವೃತ್ತವಿರಲು ಮಾತ್ರ ಸಾಧ್ಯ. |
− | * | + | * ವೃತ್ತದಲ್ಲಿ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಸಮಾನ ಜ್ಯಾಗಳು ಕೇಂದ್ರದಿಂದ (ಅಥವಾ ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಸಮಾನ ದೂರದಲ್ಲಿರುತ್ತವೆ. |
− | * | + | * ವೃತ್ತದಲ್ಲಿ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಕೇಂದ್ರದಿಂದ (ಅಥವಾ ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಸಮಾನ ದೂರದಲ್ಲಿರುವ ಜ್ಯಾಗಳು ಉದ್ದದಲ್ಲಿ ಸಮವಾಗಿರುತ್ತದೆ. |
− | * ಎರಡು | + | * ವೃತ್ತದ ಎರಡು ಕಂಸಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಅನುರೂಪ ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ ಮತ್ತು ವಿಲೋಮವಾಗಿ ವೃತ್ತದ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಅನುರೂಪ ಕಂಸಗಳು (ಲಘು, ಆಧಿಕ) ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ. |
− | * ವೃತ್ತದ | + | * ವೃತ್ತದ ಸರ್ವಸಮವಾದ ಕಂಸಗಳು ಕೇಂದ್ರದಲ್ಲಿ ಸಮಾನ ಕೋನಗಳನ್ನು ರೂಪಿಸುತ್ತವೆ. |
− | * | + | * ಒಂದು ಕಂಸದಿಂದಾಗಿ ವೃತ್ತಕೇಂದ್ರದಲ್ಲಿ ಏರ್ಪಟ್ಟ ಕೋನವು ಅದೇ ಕಂಸದಿಂದಾಗಿ ವೃತ್ತದ ಇತರ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಏರ್ಪಟ್ಟ ಕೋನದ ಎರಡರಷ್ಟಿದೆ. |
− | * ವೃತ್ತದ ಒಂದೇ | + | * ವೃತ್ತದ ಒಂದೇ ಖಂಡದಲ್ಲಿ ಉಂಟಾದ ಕೋನಗಳು ಸಮವಾಗಿರುತ್ತವೆ. |
− | * | + | * ಅರ್ಧವೃತ್ತ ಖಂಡದಲ್ಲಿ ಏರ್ಪಡುವ ಕೋನವು ಲಂಬ ಕೋನವಾಗಿರುತ್ತದೆ. |
− | * ಎರಡು ಬಿಂದುಗಳನ್ನು | + | * ಎರಡು ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡವು ಅದರ ಒಂದೇ ಬದಿಯಲ್ಲಿರುವ ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಸಮಾನದ ಕೋನಗಳನ್ನು ಏರ್ಪಡಿಸಿದರೆ, ಆ ನಾಲ್ಕು ಬಿಂದುಗಳು ವೃತ್ತದ ಮೇಲಿರುತ್ತದೆ. |
− | * | + | * ಒಂದು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತ 180 ಡಿಗ್ರಿ ಆಗಿರುತ್ತದೆ. |
− | * ಚತುರ್ಭುಜದ | + | * ಚತುರ್ಭುಜದ ಒಂದು ಜೊತೆ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತ 180 ಡಿಗ್ರಿ ಆಗಿದ್ದರೆ, ಚತುರ್ಭುಜವು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದವಾಗಿರುತ್ತದೆ. |
===ಚಟುವಟಿಕೆಗಳು #=== | ===ಚಟುವಟಿಕೆಗಳು #=== | ||
೧೪೮ ನೇ ಸಾಲು: | ೧೪೩ ನೇ ಸಾಲು: | ||
''[http://www.karnatakaeducation.org.in/?q=node/305 ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ]''</div> | ''[http://www.karnatakaeducation.org.in/?q=node/305 ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ]''</div> | ||
|} | |} | ||
− | '''"ವೃತ್ತಾಕಾರದ | + | '''[["ವೃತ್ತಾಕಾರದ ಅಕೃತಿಯಿಲ್ಲದ ಜೀವನ" ಕುರಿತು ಚರ್ಚೆ.]]''' |
− | ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ಪ್ರದೇಶಗಳಲ್ಲಿ ಕಂಡುಬರುವ ವೃತ್ತಾಕಾರದ ಆಕಾರಗಳನ್ನು ಸಂಬಂಧಿಸಲು ಮತ್ತು ಸಂಯೋಜಿಸಲು ಚರ್ಚೆ | + | ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ಪ್ರದೇಶಗಳಲ್ಲಿ ಕಂಡುಬರುವ ವೃತ್ತಾಕಾರದ ಆಕಾರಗಳನ್ನು ಸಂಬಂಧಿಸಲು ಮತ್ತು ಸಂಯೋಜಿಸಲು ಚಟುವಟಿಕೆ ಆಧಾರಿತ ಚರ್ಚೆ. |
− | ''' | + | '''[[ವೃತ್ತವು ಒಂದು ಆಕಾರ]]''' |
ವೃತ್ತವು ಸಮತಲದಲ್ಲಿರುವ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಗುಂಪಾಗಿದ್ದು ಅದು ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ಅಂತರವಾಗಿರುತ್ತದೆ. | ವೃತ್ತವು ಸಮತಲದಲ್ಲಿರುವ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಗುಂಪಾಗಿದ್ದು ಅದು ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ಅಂತರವಾಗಿರುತ್ತದೆ. | ||
− | '''ವೃತ್ತವು ಬಹುಭುಜಾಕೃತಿಯೇ? - ಒಂದು ಚರ್ಚೆ''' | + | '''[[ವೃತ್ತವು ಬಹುಭುಜಾಕೃತಿಯೇ? - ಒಂದು ಚರ್ಚೆ]]''' |
− | + | ಬಾಹುಗಳ ಸಂಖ್ಯೆಯು ಹೆಚ್ಚಾದಾಗ ಬಹುಭುಜಾಕೃತಿಯು ವೃತ್ತವನ್ನು ರೂಪಿಸುತ್ತದೆ - ಆಸಕ್ತಿದಾಯಕ ಚಟುವಟಿಕೆ. | |
− | ''' | + | '''[[ಏಕಕೇಂದ್ರಿಯ ವೃತ್ತಗಳು]]''' |
− | + | ಏಕಕೇಂದ್ರದಲ್ಲಿ ವೃತ್ತಗಳನ್ನು ಚಿತ್ರಿಸುವುದು, ಈ ಕರ-ನಿರತ ಚಟುವಟಿಕೆಯ ವೃತ್ತವು ಆಕಾರವೆಂದು ಮತ್ತು ಅದರ ವ್ಯತ್ಯಾಸಗಳನ್ನು ಪರಿಶೋಧಿಸಲಾಗುತ್ತದೆ. | |
− | ''' | + | '''[[ಸರ್ವಸಮ ವೃತ್ತಗಳು]]''' |
− | + | ಸಮವಿರುವ ವೃತ್ತಗಳು ಒಂದೇ ತ್ರಿಜ್ಯ ಹೊಂದಿರುವ ವೃತ್ತಗಳಾಗಿರುತ್ತವೆ, ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ಪರಿಚಯಿಸಲಾದ ಪರಿಕಲ್ಪನೆಗಳು. | |
− | ''' | + | '''[[ವೃತ್ತದಲ್ಲಿನ ಸಮಾನ ಭಾಗಗಳು]]''' |
− | ವೃತ್ತವನ್ನು ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸುವುದು ಮತ್ತು ಅದನ್ನು ಸಮಾನ ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸಲು | + | ವೃತ್ತವನ್ನು ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸುವುದು ಮತ್ತು ಅದನ್ನು ಸಮಾನ ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸಲು ಅನ್ವೇಷಿಸುವುದನ್ನು ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ. |
− | '''ಪೈ ಗಣಿತದ ಸ್ಥಿರ''' | + | ==== '''[[ಪೈ ಗಣಿತದ ಸ್ಥಿರ ಮೌಲ್ಯ]]''' ==== |
+ | '''ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು :''' | ||
− | + | ವೃತ್ತದ ಸುತ್ತಳತೆಯ ಅನುಪಾತವು ಅದರ ವ್ಯಾಸಕ್ಕೆ ಸ್ಥಿರ ಮೌಲ್ಯ ಎಂದು ತೋರಿಸಿ - ಪೈ | |
− | + | '''ಬೇಕಾಗುವ ಸಂಪನ್ಮೂಲಗಳು''' : | |
− | ಪ್ರೊಜೆಕ್ಟರ್, ಪೆನ್ಸಿಲ್, ಪೇಪರ್ | + | ಪ್ರೊಜೆಕ್ಟರ್, ಪೆನ್ಸಿಲ್, ಪೇಪರ್ |
− | + | '''ಪೂರ್ವ ಅವಶ್ಯಕತೆಗಳು / ಸೂಚನೆಗಳು, ಇದ್ದರೆ:''' | |
− | + | ಮೊದಲು ವೃತ್ತದ ವ್ಯಾಸ 1 ಘಟಕದ ಜಿಯೋಜೆಬ್ರಾ ಫೈಲ್ ಅನ್ನು ತೋರಿಸಿ | |
− | + | [http://rmsa.karnatakaeducation.org.in/sites/rmsa.karnatakaeducation.org.in/files/documents/pi_1.html <nowiki>[1]</nowiki>] | |
− | + | ಪೈ ಮೌಲ್ಯವನ್ನು ಪ್ರದರ್ಶಿಸಲು ಕನಿಷ್ಠ ಹೆಸರಿನ ಜಾರುಕವನ್ನು ಕನಿಷ್ಠದಿಂದ ಗರಿಷ್ಠ ಮೌಲ್ಯಕ್ಕೆ ಸರಿಸಿ ಮತ್ತು ಸುತ್ತಳತೆಯನ್ನು ಗಮನಿಸಿ | |
− | + | ||
− | + | '''ಮೌಲ್ಯಮಾಪನ''' | |
− | + | ||
− | + | ಜಿಯೋಜೆಬ್ರಾ ಫೈಲ್ [[http://rmsa.karnatakaeducation.org.in/sites/rmsa.karnatakaeducation.org.in/files/documents/Constant_Pi.html <nowiki>2]</nowiki>] ಅನ್ನು ಬಳಸಿ ಮತ್ತು ತ್ರಿಜ್ಯ ಜಾರುಕವನ್ನು ಚಲಿಸುವ ಮೂಲಕ ಮತ್ತು ಮೌಲ್ಯಗಳನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಲು ಕೆಳಗಿನ ಕೋಷ್ಟಕವನ್ನು ಬಳಸಿಕೊಂಡು ವಿಭಿನ್ನ ತ್ರಿಜ್ಯಗಳಿಗೆ ಅನುಪಾತವು ನಿಜವೆಂದು ವಿವರಿಸಿ ಮತ್ತು ಪರಿಶೀಲಿಸಿ. | |
− | + | ||
− | + | {| border="1" | |
− | + | |- | |
− | ===ಚಟುವಟಿಕೆಗಳು #=== | + | |ವೃತ್ತದ ತ್ರಿಜ್ಯ r |
+ | |ವೃತ್ತದ ಪರಿಧಿ C | ||
+ | |C/2r | ||
+ | |- | ||
+ | |6 | ||
+ | |18.85 | ||
+ | |<nowiki>-</nowiki> | ||
+ | |- | ||
+ | |2.5 | ||
+ | |15.71 | ||
+ | |<nowiki>-</nowiki> | ||
+ | |- | ||
+ | |......... | ||
+ | |<nowiki>-</nowiki> | ||
+ | |<nowiki>-</nowiki> | ||
+ | |} | ||
+ | ===ಚಟುವಟಿಕೆಗಳು # ವೃತ್ತದ ಪರಿಧಿ === | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
''[http://www.karnatakaeducation.org.in/?q=node/305 ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ]''</div> | ''[http://www.karnatakaeducation.org.in/?q=node/305 ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ]''</div> | ||
|} | |} | ||
− | + | '''ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು :''' ನಿಜ ಜೀವನದ ಉದಾಹರಣೆಯಲ್ಲಿ ವೃತ್ತದ ಪರಿಧಿಯನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡುವ ಬಳಕೆಯನ್ನು ಅನ್ವಯಿಸಲು. | |
− | + | ||
− | + | '''ಅಂದಾಜು ಸಮಯ:''' ೨೦ ನಿಮಿಷಗಳು | |
− | * | + | |
− | * | + | '''ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು''' : ಪೆನ್ಸಿಲ್, ಕಾಗದ |
− | * | + | |
− | * | + | '''ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ''' : ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು (ಸ್ಕೆಚ್) ಅನ್ನು ರಚಿಸಿ ಮತ್ತು ಮೌಲ್ಯಮಾಪನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ. ಚಿತ್ರ ಪ್ರಮಾಣಿತ 400 ಮೀಟರ್ ಚಾಲನೆಯಲ್ಲಿರುವ ಟ್ರ್ಯಾಕ್ ನ ಎರಡು ಮುಖ್ಯ ಆಯಾಮಗಳನ್ನು ತೋರಿಸುತ್ತಿದೆ. |
− | * | + | |
− | ==ಪರಿಕಲ್ಪನೆ # 2 | + | '''ಮೌಲ್ಯ ನಿರ್ಣಯ ಪ್ರಶ್ನೆಗಳು''' |
− | ===ಚಟುವಟಿಕೆಗಳು | + | * ಈ ಆಕಾರದ ಒಳಗಿನ ಪರಿಧಿಯನ್ನು ಲೆಕ್ಕಹಾಕಿ. |
+ | ** ಇದು 400 ಮೀಟರ್ಗೆ ಸಮನಾಗಿಲ್ಲ ಎಂದು ನೀವು ಏಕೆ ಭಾವಿಸುತ್ತೀರಿ? ಒಳಗಿನ ಓಟಗಾರನು ಲೇನ್ ನ ತುದಿಯಲ್ಲಿ ಓಡಲಾರನು (ಸಾಮಾನ್ಯವಾಗಿ ಒಳಗಿನ ದಂಡೆ ಇರುತ್ತದೆ) ಆದರೆ ಕ್ರೀಡಾಪಟು ಒಳಗಿನ ಅಂಚಿನಿಂದ x ಸೆಂ.ಮೀ ದೂರದಲ್ಲಿ ಸ್ಥಿರ ದೂರದಲ್ಲಿ ಓಡುತ್ತಾನೆ ಎಂದು ಬಾವಿಸೋಣ. | ||
+ | |||
+ | * ಒಳಗಿನ ಲೇನ್ನಲ್ಲಿ ಕ್ರೀಡಾಪಟು ಓಡುವ ಎರಡು ವೃತ್ತಾಕಾರದ ಭಾಗಗಳ ತ್ರಿಜ್ಯ ಎಷ್ಟು? | ||
+ | * ಸೆಂಟಿಮೀಟರ್ಗಳಲ್ಲಿ ಪ್ರಯಾಣಿಸಿದ ಒಟ್ಟು ದೂರವು 2 π (3650 + x) + 16878 ಎಂದು ತೋರಿಸಿ ಮತ್ತು x ಗೆ ಮೌಲ್ಯವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಇದನ್ನು 40 000 ಸೆಂ.ಮೀ.ಗೆ ಸಮೀಕರಿಸಿ. | ||
+ | ** ಇದು ವಾಸ್ತವಿಕವೇ? 200 ಮೀ ಮತ್ತು 400 ಮೀ ಓಟಗಳಿಗೆ, ಓಟಗಾರರು ನಿರ್ದಿಷ್ಟ ಲೇನ್ಗಳಲ್ಲಿ ಓಡುತ್ತಾರೆ. ಪ್ರಾರಂಭದ ಸ್ಥಾನಗಳು ಸ್ಥಗಿತಗೊಳ್ಳದ ಹೊರತು ನೀವು ಮತ್ತಷ್ಟು ಓಡಬೇಕು ಎಂಬುದು ಸ್ಪಷ್ಟ. | ||
+ | * ಪ್ರತಿ ಲೇನ್ನ ಅಗಲವು 1.22 ಮೀ, ಮತ್ತು ಎಲ್ಲಾ ಓಟಗಾರರು (ಒಳಗಿನವರನ್ನು ಹೊರತುಪಡಿಸಿ) ತಮ್ಮ ಲೇನ್ಗಳ ಒಳಗಿನಿಂದ ಸುಮಾರು 20 ಸೆಂ.ಮೀ ಓಡುತ್ತಾರೆ ಎಂದು ಭಾವಿಸಲಾಗಿದೆ. | ||
+ | ** ಈ ಭಾವನೆಗಳೊಂದಿಗೆ, ಒಂದು ಸಂಪೂರ್ಣ ಲ್ಯಾಪ್ ಅನ್ನು ಚಲಾಯಿಸುವಾಗ ಲೇನ್ 2 ನಲ್ಲಿನ ಕ್ರೀಡಾಪಟು ಏಷ್ಟು ದೂರವನ್ನು ಆವರಿಸುತ್ತಾನೆ? ಆದ್ದರಿಂದ 400 ಮೀ ಓಟಕ್ಕೆ ಅಗತ್ಯವಾದುದನ್ನು ಊಹಿಸಿ. | ||
+ | ** ಲೇನ್ 3 ನಲ್ಲಿ ಓಡುವ ಯಾರಿಗಾದರೂ ಏನಾಗಬೇಕು? | ||
+ | * 400 ಮೀ ಓಟದಲ್ಲಿ 8 ಓಟಗಾರರು ಇದ್ದರೆ, ಲೇನ್ 8 ರಲ್ಲಿ ಕ್ರೀಡಾಪಟುವಿನ ಸ್ಟಾಗರ್ (stagger) ಏನು? | ||
+ | ಲೇನ್ 1 ಗೆ ಇದನ್ನು ಹೋಲಿಕೆ ಮಾಡಿ? ಲೇನ್ 1 ರಲ್ಲಿರುವುದರಿಂದ ಏನಾದರೂ ಪ್ರಯೋಜನವಿದೆಯೇ? | ||
+ | |||
+ | '''ಹೆಚ್ಚಿನ ಪರಿಶೋಧನೆಗಳು''': | ||
+ | |||
+ | 1. ಈ ಲಿಂಕ್ ಪೈ ಎಂದರೇನು ಎಂಬುದರ ಒಂದು ಅವಲೋಕನವನ್ನು ನೀಡುತ್ತದೆ. [[wikipedia:Pi|[3]]] | ||
+ | |||
+ | == ಪರಿಕಲ್ಪನೆ # 2 ವೃತ್ತಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು == | ||
+ | |||
+ | ===ಚಟುವಟಿಕೆಗಳು === | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
''[http://www.karnatakaeducation.org.in/?q=node/305 '''ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ''']''</div> | ''[http://www.karnatakaeducation.org.in/?q=node/305 '''ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ''']''</div> | ||
|} | |} | ||
− | ''' | + | '''[[ವೃತ್ತ ಕೇಂದ್ರ]]''' |
ವೃತ್ತದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳು ಒಂದು ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ದೂರದಲ್ಲಿರುತ್ತವೆ, ಅದು ವೃತ್ತದ ಕೇಂದ್ರವಾಗಿರುತ್ತದೆ. | ವೃತ್ತದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳು ಒಂದು ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ದೂರದಲ್ಲಿರುತ್ತವೆ, ಅದು ವೃತ್ತದ ಕೇಂದ್ರವಾಗಿರುತ್ತದೆ. | ||
− | '''ವೃತ್ತದ ತ್ರಿಜ್ಯ ಮತ್ತು ವ್ಯಾಸ''' | + | '''[[ವೃತ್ತದ ತ್ರಿಜ್ಯ ಮತ್ತು ವ್ಯಾಸ]]''' |
ವೃತ್ತದ ತ್ರಿಜ್ಯ ಮತ್ತು ವ್ಯಾಸವನ್ನು ಗುರುತಿಸುವುದು ಮತ್ತು ಅವುಗಳ ಸಂಬಂಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. | ವೃತ್ತದ ತ್ರಿಜ್ಯ ಮತ್ತು ವ್ಯಾಸವನ್ನು ಗುರುತಿಸುವುದು ಮತ್ತು ಅವುಗಳ ಸಂಬಂಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. | ||
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಪರಿಧಿ]]''' |
− | ಆಕಾರದ | + | ಆಕಾರದ ಪರಿಧಿಯನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸುತ್ತಳತೆಯನ್ನು ಅಳೆಯುವುದು. |
− | '''ಅರ್ಧವೃತ್ತ''' | + | '''[[ಅರ್ಧವೃತ್ತ]]''' |
ವೃತ್ತವನ್ನು ಎರಡು ಭಾಗಗಳಾಗಿ ವಿಭಜಿಸಿ ವ್ಯಾಸವನ್ನು ಎಳೆಯುವ ಮೂಲಕ ಅರ್ಧವೃತ್ತಗಳನ್ನು ರೂಪಿಸುತ್ತದೆ. | ವೃತ್ತವನ್ನು ಎರಡು ಭಾಗಗಳಾಗಿ ವಿಭಜಿಸಿ ವ್ಯಾಸವನ್ನು ಎಳೆಯುವ ಮೂಲಕ ಅರ್ಧವೃತ್ತಗಳನ್ನು ರೂಪಿಸುತ್ತದೆ. | ||
− | '''ವೃತ್ತದ ಆಂತರಿಕ ಮತ್ತು ಹೊರಭಾಗ''' | + | '''[[ವೃತ್ತದ ಆಂತರಿಕ ಮತ್ತು ಹೊರಭಾಗ]]''' |
− | ಅದರ | + | ಅದರ ಪರಿಧಿಯೊಳಗಿನ ವೃತ್ತದ ಒಳ ಸಮತಲದಲ್ಲಿರುವ ಬಿಂದುಗಳು ಆಂತರಿಕ ಬಿಂದುಗಳು ಮತ್ತು ಪರಿಧಿಯ ಹೊರಭಾಗದಲ್ಲಿರುವ ಬಿಂದುಗಳು ಅದರ ಬಾಹ್ಯ ಬಿಂದುಗಳು ಎಂದು ಹೇಳಲಾಗುತ್ತದೆ. |
− | '''ವೃತ್ತದ ಮೂಲ ಅಂಶಗಳು''' | + | '''[[ವೃತ್ತದ ಮೂಲ ಅಂಶಗಳು]]''' |
− | + | ವೃತ್ತಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಮೂಲ ನಿಯತಾಂಕಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ವಿಚಾರಣೆ. | |
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಜ್ಯಾ]]''' |
− | ವೃತ್ತದ | + | ವೃತ್ತದ ಜ್ಯಾಗಳು ವಿಭಿನ್ನ ಅಳತೆಗಳಲ್ಲಿರುತ್ತವೆ. ಜ್ಯಾ ದ ಉದ್ದವು ಕೇಂದ್ರಕ್ಕೆ ಹತ್ತಿರವಾಗುತ್ತಿದ್ದಂತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ ಮತ್ತು ಅದು ಕೇಂದ್ರದಿಂದ ದೂರ ಹೋಗುವಾಗ ಕಡಿಮೆಯಾಗುತ್ತದೆ. |
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಕಂಸ]]''' |
− | ಎರಡೂ ದಿಕ್ಕುಗಳಲ್ಲಿನ ಎರಡು ಬಿಂದುಗಳೊಳಗಿನ | + | ಎರಡೂ ದಿಕ್ಕುಗಳಲ್ಲಿನ ಎರಡು ಬಿಂದುಗಳೊಳಗಿನ ಪರಿಧಿಯ ಭಾಗವನ್ನು ಅದರ ಕಂಸಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. |
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಜ್ಯಾಗಳು ಮತ್ತು ವೃತ್ತಖಂಡ]]''' |
− | ಯಾವುದೇ ಎರಡು ತ್ರಿಜ್ಯಗಳ ನಡುವೆ ಸುತ್ತುವರಿದ ವೃತ್ತದ | + | ಯಾವುದೇ ಎರಡು ತ್ರಿಜ್ಯಗಳ ನಡುವೆ ಸುತ್ತುವರಿದ ವೃತ್ತದ ಭಾಗವನ್ನು ವೃತ್ತಖಂಡ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಅರ್ಧವೃತ್ತ ಮತ್ತು ಚತುರ್ಥವು ವಿಶೇಷ ರೀತಿಯ ಕ್ಷೇತ್ರಗಳಾಗಿವೆ. |
== ಪರಿಕಲ್ಪನೆ # 3: ವಲಯಗಳು ಮತ್ತು ರೇಖೆಗಳು == | == ಪರಿಕಲ್ಪನೆ # 3: ವಲಯಗಳು ಮತ್ತು ರೇಖೆಗಳು == | ||
− | + | ===ಚಟುವಟಿಕೆಗಳು === | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ===ಚಟುವಟಿಕೆಗಳು | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
''[http://www.karnatakaeducation.org.in/?q=node/305 '''ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ''']''</div> | ''[http://www.karnatakaeducation.org.in/?q=node/305 '''ನಿಮ್ಮ ಅಭಿಪ್ರಾಯ''']''</div> | ||
|} | |} | ||
− | ''' | + | '''[[ಜ್ಯಾ ಗಳ ಪರಿಚಯ]]''' |
− | + | ಜ್ಯಾ ವು ವೃತ್ತದಲ್ಲಿ ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳನ್ನು ಸೇರುವ ಮಧ್ಯಂತರವಾಗಿದೆ. ಈ ಚಟುವಟಿಕೆಯು ಜ್ಯಾದ ರಚನೆಯನ್ನು ತನಿಖೆ ಮಾಡುತ್ತದೆ ಮತ್ತು ವೃತ್ತದ ವ್ಯಾಸದೊಂದಿಗೆ ಹೋಲಿಸುತ್ತದೆ. | |
− | '''ಚಟುವಟಿಕೆ 1 ಒಂದೇ | + | '''ಚಟುವಟಿಕೆ 1 [[ಒಂದೇ ವೃತ್ತಖಂಡದಲ್ಲಿನ ಕೋನಗಳು ಸಮಾನವಾಗಿರುತ್ತದೆ.]]''' |
− | |||
− | |||
− | |||
− | |||
− | ''' | + | '''[[ಕಂಸದಿಂದ ರೂಪುಗೊಂಡ ಕೋನಗಳು]]''' |
− | ''' | + | '''[[ವೃತ್ತಛೇದಕ ಮತ್ತು ಸ್ಪರ್ಶಕ]]''' |
− | ಸ್ಪರ್ಶಕವು ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ರೇಖೆ. | + | ಸ್ಪರ್ಶಕವು ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ರೇಖೆ. ವೃತ್ತಛೇದಕ ಎನ್ನುವುದು ವೃತ್ತದ ಮೇಲೆ ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳ ಮೂಲಕ ಹಾದುಹೋಗುವ ರೇಖೆಯಾಗಿದೆ. |
== ಪರಿಕಲ್ಪನೆ # 4: ಪ್ರಮೇಯಗಳು ಮತ್ತು ಗುಣಲಕ್ಷಣಗಳು == | == ಪರಿಕಲ್ಪನೆ # 4: ಪ್ರಮೇಯಗಳು ಮತ್ತು ಗುಣಲಕ್ಷಣಗಳು == | ||
− | + | ಜ್ಯಾ ವು ವೃತ್ತದ ಸುತ್ತಳತೆಯ ಮೇಲೆ 2 ಬಿಂದುಗಳನ್ನು ಸೇರುವ ನೇರ ರೇಖೆ. ವೃತ್ತದೊಳಗಿನ ಜ್ಯಾ ಗಳು ಹಲವು ವಿಧಗಳಲ್ಲಿ ಸಂಬಂಧ ಹೊಂದಿವೆ. | |
− | ವೃತ್ತದ | + | ವೃತ್ತದ ಜ್ಯಾ ಗಳನ್ನು ಒಳಗೊಂಡಿರುವ ಪ್ರಮೇಯಗಳು ಹೀಗಿವೆ: |
− | * | + | * ಜ್ಯಾದ ಲಂಬಾರ್ಧಕವು ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಹಾದುಹೋಗುತ್ತದೆ. |
− | * | + | * ಸರ್ವಸಮ ಜ್ಯಾಗಳು ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ. |
− | * ವೃತ್ತದಲ್ಲಿನ ಎರಡು | + | * ವೃತ್ತದಲ್ಲಿನ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಪ್ರತಿಬಂಧಿತ ಕಂಸಗಳು ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ. |
− | * ವೃತ್ತದಲ್ಲಿನ ಎರಡು | + | * ವೃತ್ತದಲ್ಲಿನ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವು ಎರಡು ಕೇಂದ್ರ ಕೋನಗಳನ್ನು ಸರ್ವಸಮವಾಗಿ ನಿರ್ಧರಿಸುತ್ತವೆ. |
− | ಚಟುವಟಿಕೆಗಳು : | + | '''ಚಟುವಟಿಕೆಗಳು :''' |
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಕೇಂದ್ರಕ್ಕೆ ಜ್ಯಾದ ಉದ್ದ ಮತ್ತು ಅದರ ದೂರ]]''' |
− | + | ಜ್ಯಾಕ್ಕೆ ಕೇಂದ್ರದಿಂದ ದೂರವು ಜ್ಯಾದ ಲಂಬವಾದ ಅಂತರವಾಗಿದ್ದು ಅದು ಕೇಂದ್ರದ ಮೂಲಕ ಹಾದುಹೋಗುತ್ತದೆ. | |
− | '''ವೃತ್ತದ | + | '''[[ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಉದ್ದವಾದ ಜ್ಯಾ ಹಾದುಹೋಗುತ್ತದೆ]]''' |
− | ವ್ಯಾಸವನ್ನು ತನಿಖೆ ಮಾಡುವುದು ವೃತ್ತದ ಉದ್ದದ | + | ವ್ಯಾಸವನ್ನು ತನಿಖೆ ಮಾಡುವುದು, ವೃತ್ತದ ಉದ್ದದ ಜ್ಯಾವಾಗಿದೆ. |
− | '''ವೃತ್ತದ | + | '''[[ಜ್ಯಾ ದ ಲಂಬಾರ್ಧಕವು ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಹಾದುಹೋಗುತ್ತದೆ]]''' |
− | ಪ್ರತಿಯೊಂದು | + | ಪ್ರತಿಯೊಂದು ಲಂಬಾರ್ಧಕವು ಕೇಂದ್ರದ ಮೂಲಕ ಹಾದುಹೋಗುವುದರಿಂದ, ಕೇಂದ್ರವು ಪ್ರತಿಯೊಂದರ ಮೇಲೆಯೂ ಇರಬೇಕು, ಆದ್ದರಿಂದ ಕೇಂದ್ರವು ಅವುಗಳ ಏಕೈಕ ಸಾಮಾನ್ಯ ಬಿಂದುವಾಗಿರಬೇಕು. |
− | '''ಕೇಂದ್ರದಿಂದ | + | '''[[ಕೇಂದ್ರದಿಂದ ಲಂಬವು ಜ್ಯಾವನ್ನು ಅರ್ಧಿಸುತ್ತದೆ]]''' |
− | ''' | + | '''[[ಸರ್ವಸಮ ಜ್ಯಾ ಗಳು ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ]]''' |
− | ಒಂದೇ | + | ಒಂದೇ ವೃತ್ತದಲ್ಲಿ ಅಥವಾ ಸಮ ತ್ರಿಜ್ಯದ ವೃತ್ತಗಳಲ್ಲಿ: |
− | * | + | * ಸಮ ಜ್ಯಾಗಳು ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ. |
− | * | + | * ಇದಕ್ಕೆ ವಿಲೋಮವಾಗಿ, ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುವ ಜ್ಯಾಗಳು ಸಮವಾಗಿರುತ್ತದೆ. |
− | ''' | + | '''[[ಜ್ಯಾದಿಂದ ರೂಪುಗೊಂಡಿರುವ ವೃತ್ತದಲ್ಲಿನ ಕೋನಗಳು]]''' |
− | + | ಜ್ಯಾ ದ ಕೊನೆಯ ಬಿಂದುಗಳಲ್ಲಿ ತ್ರಿಜ್ಯದಿಂದ ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಉಂಟಾದ ಕೋನವನ್ನು ಕೇಂದ್ರ ಕೋನ ಅಥವಾ ಜ್ಯಾದಿಂದ ರೂಪುಗೊಂಡಿರುವ ವೃತ್ತದಲ್ಲಿನ ಕೋನಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. | |
== <big>ಪರಿಕಲ್ಪನೆ #5 ಚಕ್ರೀಯ ಚತುರ್ಭುಜಗಳು</big> == | == <big>ಪರಿಕಲ್ಪನೆ #5 ಚಕ್ರೀಯ ಚತುರ್ಭುಜಗಳು</big> == | ||
− | ಯೂಕ್ಲಿಡಿಯನ್ | + | ಯೂಕ್ಲಿಡಿಯನ್ ರೇಖಾಗಣಿತದಲ್ಲಿ, ಚಕ್ರೀಯ ಚತುರ್ಭುಜ ಅಥವಾ inscribed ಚತುರ್ಭುಜವು ಚತುರ್ಭುಜವಾಗಿದ್ದು, ಇದರ ಶೃಂಗಗಳು ಒಂದೇ ವೃತ್ತದ ಮೇಲಿರುತ್ತವೆ. ಈ ವೃತ್ತವನ್ನು ವೃತ್ತಾಕಾರ (circumcircle)ಅಥವಾ ಸುತ್ತುವರಿದ ವೃತ್ತ (circumscribed circle) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ, ಮತ್ತು ಶೃಂಗಗಳನ್ನು concyclic ಎಂದು ಹೇಳಲಾಗುತ್ತದೆ. |
− | ಚಟುವಟಿಕೆಗಳು | + | '''ಚಟುವಟಿಕೆಗಳು''' |
− | '''ಚಕ್ರೀಯ ಚತುರ್ಭುಜ''' | + | '''[[ಚಕ್ರೀಯ ಚತುರ್ಭುಜ]]''' |
− | ಚತುರ್ಭುಜ | + | ಚತುರ್ಭುಜ ABCD ಯನ್ನು ಅದರ ನಾಲ್ಕು ಶೃಂಗಗಳು ವೃತ್ತದ ಮೇಲೆ ಇದ್ದರೆ ಅದನ್ನು ಚಕ್ರೀಯ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಒಂದು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದಲ್ಲಿ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತವು 180 ಡಿಗ್ರಿಗಳಷ್ಟಿರುತ್ತದೆ. ಚತುರ್ಭುಜದ ಒಂದು ಜೋಡಿ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತವು 180 ಡಿಗ್ರಿ ಆಗಿದ್ದರೆ, ಚತುರ್ಭುಜವು ಚಕ್ರೀಯವಾಗಿರುತ್ತದೆ ಚಕ್ರೀಯ ಚತುರ್ಭುಜದಲ್ಲಿ ಬಾಹ್ಯ ಕೋನವು ಆಂತರಿಕ ಅಭಿಮುಖ ಕೋನಕ್ಕೆ ಸಮಾನವಾಗಿರುತ್ತದೆ. |
− | '''ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಗುಣಲಕ್ಷಣಗಳು''' | + | '''[[ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಗುಣಲಕ್ಷಣಗಳು]]''' |
− | + | ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಕೋನಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಈ ಕರ-ನಿರತ ಚಟುವಟಿಕೆಯಿಂದ ಪರಿಶೋಧಿಸಲಾಗುತ್ತದೆ. | |
== ಪರಿಕಲ್ಪನೆ # 6 ವೃತ್ತಗಳ ರಚನೆಗಳು == | == ಪರಿಕಲ್ಪನೆ # 6 ವೃತ್ತಗಳ ರಚನೆಗಳು == | ||
− | ಸ್ಪರ್ಶಕವು ಒಂದು ಮತ್ತು ಏಕೈಕ ಬಿಂದುವಿನಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ಸರಳ ರೇಖೆ ಎಂದು ವಿದ್ಯಾರ್ಥಿಗಳು ತಿಳಿದಿರಬೇಕು. ಸ್ಪರ್ಶಕವು ವೃತ್ತದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂದು ಅವರು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬೇಕು. ಸ್ಪರ್ಶಕದ | + | ಸ್ಪರ್ಶಕವು ಒಂದು ಮತ್ತು ಏಕೈಕ ಬಿಂದುವಿನಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ಸರಳ ರೇಖೆ ಎಂದು ವಿದ್ಯಾರ್ಥಿಗಳು ತಿಳಿದಿರಬೇಕು. ಸ್ಪರ್ಶಕವು ವೃತ್ತದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂದು ಅವರು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬೇಕು. ಸ್ಪರ್ಶಕದ ರಚನೆಯ ಶಿಷ್ಟಚಾರ. ಸ್ಪರ್ಶಕವನ್ನು ವೃತ್ತದ ಒಂದು ಬಿಂದುವಿಗೆ ರಚಿಸುವುದು. ಒಂದು ದೂರದಲ್ಲಿ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳನ್ನು ರಚಿಸುವುದು. ಎರಡು ವೃತ್ತಗಳಿಗೆ ಸಾಮಾನ್ಯವಾದ ಸ್ಪರ್ಶಕವನ್ನು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಒಂದೇ ಪಾರ್ಶ್ವದಲ್ಲಿ ವೃತ್ತಗಳಿದ್ದರೆ ಆ ಸ್ಪರ್ಶಕವನ್ನು ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಉಭಯ ಪಾರ್ಶ್ವಗಳಲ್ಲಿ ವೃತ್ತಗಳಿದ್ದರೆ ಆ ಸ್ಪರ್ಶಕವನ್ನು ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. |
− | '''ವೃತ್ತಗಳ ರಚನೆಗಳು''' | + | '''[[ವೃತ್ತಗಳ ರಚನೆಗಳು]]''' |
− | == ಪರಿಕಲ್ಪನೆ # 7 ಸ್ಪರ್ಶಕಗಳು == | + | == ಪರಿಕಲ್ಪನೆ # 7 ವೃತ್ತದ ಸ್ಪರ್ಶಕಗಳು == |
− | ನಿಖರವಾಗಿ ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ರೇಖೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ ಮತ್ತು ಅದು ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ಸ್ಥಳವನ್ನು | + | ನಿಖರವಾಗಿ ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ರೇಖೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ ಮತ್ತು ಅದು ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ಸ್ಥಳವನ್ನು ಸ್ಪರ್ಶ ಬಿಂದು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. |
'''ಸ್ಪರ್ಶಕದ ಗುಣಲಕ್ಷಣಗಳು''' | '''ಸ್ಪರ್ಶಕದ ಗುಣಲಕ್ಷಣಗಳು''' | ||
− | + | ಯಾವುದೇ ವೃತ್ತದಲ್ಲಿ ತ್ರಿಜ್ಯ ಮತ್ತು ಸ್ಪರ್ಶಕಗಳು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಪರಸ್ಪರ ಲಂಬವಾಗಿರುತ್ತದೆ. ವೃತ್ತದ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಒಂದೇ ಒಂದು ಸ್ಪರ್ಶಕ ಇರಬಹುದು ಎಂದು ನಾವು ತೀರ್ಮಾನಿಸಬಹುದು. | |
− | + | * ಒಂದು ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಖಂಡಗಳು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶವಾಗಿದ್ದರೆ ಅವು ಸರ್ವಸಮವಾಗಿರುತ್ತವೆ ಎಂಬ ಪ್ರಮೇಯವನ್ನು ವಿವರಿಸಿ. | |
− | + | * ಸ್ಪರ್ಶಕಗಳನ್ನು ಒಳಗೊಂಡ ಸಮಸ್ಯೆಯನ್ನು ಪರಿಹರಿಸಿ. | |
− | + | * ವೃತ್ತದ ಸುತ್ತುವರಿದ ತ್ರಿಭುಜಗಳನ್ನು ಒಳಗೊಂಡ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಅನ್ವಯಿಸಿ. | |
− | ಸ್ಪರ್ಶಕಗಳನ್ನು ಒಳಗೊಂಡ | + | '''ವೃತ್ತದ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳು''' |
− | |||
− | ವೃತ್ತದ | ||
− | |||
− | '''ವೃತ್ತದ | ||
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಸ್ಪರ್ಶಕಗಳ ಉದ್ದಗಳು ಸಮಾನವಾಗಿರುತ್ತದೆ. | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಸ್ಪರ್ಶಕಗಳ ಉದ್ದಗಳು ಸಮಾನವಾಗಿರುತ್ತದೆ. | ||
− | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟ ಸ್ಪರ್ಶಕಗಳು ವೃತ್ತದ | + | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟ ಸ್ಪರ್ಶಕಗಳು ವೃತ್ತದ ಕೇಂದ್ರ ಬಿಂದುವನ್ನು ಸೇರುವ ರೇಖೆಗೆ ಸಮಾನವಾಗಿ ತೋರುತ್ತವೆ. |
− | ''' | + | '''ವೃತ್ತಛೇದಕ''' |
− | ವೃತ್ತವನ್ನು ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳಲ್ಲಿ | + | ವೃತ್ತವನ್ನು ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುವ ರೇಖೆಯನ್ನು ವೃತ್ತಛೇದಕ ರೇಖೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ (ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ವೃತ್ತಛೇದಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ). |
'''ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು''' | '''ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು''' | ||
− | ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ರೇಖೆಗಳು ಅಥವಾ | + | ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ರೇಖೆಗಳು ಅಥವಾ ಖಂಡಗಳಾಗಿವೆ, ಅದು ಒಂದೇ ಸಮಯದಲ್ಲಿ ಒಂದು ವೃತ್ತಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವಾಗುತ್ತದೆ. |
'''ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು''' | '''ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು''' | ||
− | + | ವೃತ್ತಗಳ ಕೇಂದ್ರಗಳು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಒಂದೇ ಪಾರ್ಶ್ವದಲ್ಲಿರುತ್ತವೆ. (Dct) | |
− | '''ಸಾಮಾನ್ಯ | + | '''ವ್ಯತ್ಯಸ್ತ''' '''ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು''' |
− | + | ವೃತ್ತಗಳ ಕೇಂದ್ರಗಳು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ (tct) ಉಭಯ ಪಾರ್ಶ್ವಗಳಲ್ಲಿರುತ್ತವೆ. | |
'''ಮೌಲ್ಯಮಾಪನ''' | '''ಮೌಲ್ಯಮಾಪನ''' | ||
− | 1. 2 | + | 1. 2 ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳಿಗೆ ಮತ್ತು 2 ಪ್ರತ್ಯೇಕ ವೃತ್ತಗಳಿಗೆ ಎಷ್ಟು ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು? |
− | 2. ನೀವು | + | 2. ನೀವು 2 ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳಿಗೆ ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದೇ? |
− | 3. | + | 3. ವೃತ್ತಛೇದಕಗೆ ಸಮಾಂತರವಾಗಿರುವ ವೃತ್ತಕ್ಕೆ ಎಷ್ಟು ಸಂಖ್ಯೆ ಸ್ಪರ್ಶಕಗಳಿರುತ್ತವೆ? |
4. ವೃತ್ತದೊಳಗಿನ ಬಿಂದುವಿನ ಮೂಲಕ ಎಷ್ಟು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು? | 4. ವೃತ್ತದೊಳಗಿನ ಬಿಂದುವಿನ ಮೂಲಕ ಎಷ್ಟು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು? | ||
೩೭೭ ನೇ ಸಾಲು: | ೩೯೧ ನೇ ಸಾಲು: | ||
'''ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳ ಪುರಾವೆಗಳು ಮತ್ತು ಪರಿಶೀಲನೆ''' | '''ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳ ಪುರಾವೆಗಳು ಮತ್ತು ಪರಿಶೀಲನೆ''' | ||
− | ತಾರ್ಕಿಕತೆಯ ಸರಿಯಾದ ಬಳಕೆಯು ಗಣಿತಶಾಸ್ತ್ರದ ಅಂತರಂಗದಲ್ಲಿದೆ, ವಿಶೇಷವಾಗಿ ಪುರಾವೆಗಳನ್ನು ನಿರ್ಮಿಸುವಲ್ಲಿ. ಅನೇಕ ಹೇಳಿಕೆಗಳು, ವಿಶೇಷವಾಗಿ | + | ತಾರ್ಕಿಕತೆಯ ಸರಿಯಾದ ಬಳಕೆಯು ಗಣಿತಶಾಸ್ತ್ರದ ಅಂತರಂಗದಲ್ಲಿದೆ, ವಿಶೇಷವಾಗಿ ಪುರಾವೆಗಳನ್ನು ನಿರ್ಮಿಸುವಲ್ಲಿ. ಅನೇಕ ಹೇಳಿಕೆಗಳು, ವಿಶೇಷವಾಗಿ ರೇಖಾಗಣಿತದಲ್ಲಿ. ಒಂದು ಪುರಾವೆಯು ಹಲವಾರು ಗಣಿತದ ಹೇಳಿಕೆಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿದೆ ಎಂಬುದನ್ನು ನೆನಪಿಸಿಕೊಳ್ಳಿ, ಪ್ರತಿಯೊಂದನ್ನು ತಾರ್ಕಿಕವಾಗಿ ಪುರಾವೆಗಳಲ್ಲಿನ ಹಿಂದಿನ ಹೇಳಿಕೆಯಿಂದ ಅಥವಾ ಮೊದಲೇ ಸಾಬೀತಾದ ಪ್ರಮೇಯದಿಂದ ಅಥವಾ ಆಧಾರಸೂತ್ರ(ಸಿದ್ಧಸೂತ್ರ)ದಿಂದ ಅಥವಾ ಕಲ್ಪಿತ ಸಿದ್ಧಾಂತಗಳಿಂದ ನಿರ್ಣಯಿಸಲಾಗುತ್ತದೆ. ಪುರಾವೆಯನ್ನು ರಚಿಸಲು ನಾವು ಬಳಸುವ ಮುಖ್ಯ ಸಾಧನವೆಂದರೆ ನಿಗಮನ ತಾರ್ಕಿಕ ಪ್ರಕ್ರಿಯೆ. |
− | ನಾವು ಈ ಅಧ್ಯಾಯದ ಅಧ್ಯಯನವನ್ನು ಹಲವಾರು ಉದಾಹರಣೆಗಳನ್ನು ಬಳಸಿಕೊಂಡು | + | ನಾವು ಈ ಅಧ್ಯಾಯದ ಅಧ್ಯಯನವನ್ನು ಹಲವಾರು ಉದಾಹರಣೆಗಳನ್ನು ಬಳಸಿಕೊಂಡು ನಿಗಮನ ತಾರ್ಕಿಕ ಕ್ರಿಯೆಯಲ್ಲಿ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ. |
− | ಪ್ರಾಯೋಗಿಕ ನಿರ್ಮಾಣದ ಮೂಲಕ | + | ಪ್ರಾಯೋಗಿಕ ನಿರ್ಮಾಣದ ಮೂಲಕ ಮತ್ತು ಜಿಯೋಜಿಬ್ರಾ ಉಪಕರಣವನ್ನು ಬಳಸುವ ಮೂಲಕ ನಾವು ಪ್ರಮೇಯಗಳನ್ನು ಪರಿಶೀಲಿಸಬಹುದು. |
− | ''' | + | '''ವೃತ್ತಗಳಿಗೆ ಸ್ಪರ್ಶಕಗಳು:''' |
− | ಸ್ಪರ್ಶಕ: ವೃತ್ತವನ್ನು ನಿಖರವಾಗಿ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ | + | ಸ್ಪರ್ಶಕ: ವೃತ್ತವನ್ನು ನಿಖರವಾಗಿ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಿಸುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ಬಿಂದು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ |
− | ವೃತ್ತದ | + | ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸ್ಪರ್ಶಕ ಬಿಂದುವಿಗಿನ ತ್ರಿಜ್ಯವು ಯಾವಾಗಲೂ ಸ್ಪರ್ಶಕ ರೇಖೆಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ. |
− | ತ್ರಿಜ್ಯವು ರೇಖೆಗೆ | + | ತ್ರಿಜ್ಯವು ರೇಖೆಗೆ ಲಂಬವಾಗಿಲ್ಲವೆಂದರೆ, ರೇಖೆಯು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವಾಗಿರುವುದಿಲ್ಲ. |
ಪೈಥಾಗರಿಯನ್ ಪ್ರಮೇಯವನ್ನು ನೆನಪಿಸಿಕೊಳ್ಳಿ: | ಪೈಥಾಗರಿಯನ್ ಪ್ರಮೇಯವನ್ನು ನೆನಪಿಸಿಕೊಳ್ಳಿ: | ||
− | ಮೂರನೆಯ ಮೌಲ್ಯಕ್ಕೆ ಪರಿಹರಿಸಲು ಸ್ಪರ್ಶಕ ರೇಖೆ ಮತ್ತು | + | ಮೂರನೆಯ ಮೌಲ್ಯಕ್ಕೆ ಪರಿಹರಿಸಲು ಸ್ಪರ್ಶಕ ರೇಖೆ ಮತ್ತು ಸ್ಪರ್ಶ ಬಿಂದುವಿನ ಮೂಲಕ ತ್ರಿಜ್ಯವು ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂಬ ಅಂಶವನ್ನು ಬಳಸಿ. ಒಂದು ನಿರ್ದಿಷ್ಟ ವಲಯಕ್ಕೆ ಒಂದು ರೇಖೆಯು ಸ್ಪರ್ಶವಾಗಿದೆಯೆ ಅಥವಾ ಇಲ್ಲವೇ ಎಂಬುದನ್ನು ನಿರ್ಣಯಿಸಲು ನೀವು ಈ ಆಧಾರವನ್ನು ಹೇಗೆ ಬಳಸಬಹುದು ಎಂಬುದನ್ನು ತೋರಿಸಿ. |
− | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ | + | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳ ಉದ್ದವು ಸಮಾನವಾಗಿರುತ್ತದೆ. |
− | '''ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳು-ಚಟುವಟಿಕೆ''' | + | '''[[ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳು-ಚಟುವಟಿಕೆ]]''' |
− | '''ವೃತ್ತಕ್ಕೆ | + | '''[[ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳ ರಚನೆಗಳು ಮತ್ತು ಅದರ ಗುಣಲಕ್ಷಣಗಳು]]''' |
'''ಸ್ಪರ್ಶಕಗಳ ವಿಧಗಳು''' | '''ಸ್ಪರ್ಶಕಗಳ ವಿಧಗಳು''' | ||
+ | * ವೃತ್ತಛೇದಕ ಮತ್ತು ವೃತ್ತದ ಸ್ಪರ್ಶಕ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಗುರುತಿಸಿ. | ||
+ | * ವೃತ್ತದ ಮೇಲೆ ಒಂದು ನಿರ್ದಿಷ್ಟ ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಕವನ್ನು ರಚಿಸಿ. | ||
+ | * ರಚಿಸಿ ಮತ್ತು ಅದನ್ನು ಪರಿಶೀಲಿಸಿ, ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆಯಲಾದ ತ್ರಿಜ್ಯವು ಸ್ಪರ್ಶಕಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ. | ||
+ | * ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳನ್ನು ರಚಿಸಿ. | ||
+ | * ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಮತ್ತು ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಗುರುತಿಸಿ. | ||
+ | '''ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳು''' | ||
− | + | ಎರಡು ವೃತ್ತಗಳ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು, ಎರಡು ವೃತ್ತಗಳು ಎಷ್ಟು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ?. 0, 1, 2, 3, 4 ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳೊಂದಿಗೆ ಅನೌಪಚಾರಿಕವಾಗಿ ಎಲ್ಲಾ ವಿಭಿನ್ನ ಪ್ರಕರಣಗಳನ್ನು ಎಳೆಯಿರಿ. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ಎರಡು | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ಎರಡು | + | ಯಾವುದೇ ಎರಡು ವಿಭಿನ್ನ ವೃತ್ತಗಳಿಗೆ, ಅವುಗಳ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಐದು ಸಾಧ್ಯತೆಗಳಿವೆ: |
− | + | * ಒಂದು ವೃತ್ತವು ಇನ್ನೊಂದರೊಳಗೆ ಇರುತ್ತದೆ. ಅವುಗಳಿಗೆ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳಿಲ್ಲ. | |
− | '''ಸ್ಪರ್ಶಕಗಳ | + | * ಒಂದು ವೃತ್ತವು ಇನ್ನೊಂದನ್ನು ಒಳಗಿನಿಂದ ಮುಟ್ಟುತ್ತದೆ(ಅಂತಃಸ್ಪರ್ಶಿ ವ್ರತ್ತಗಳು). ಈ ಸ್ಪರ್ಶದ ಹಂತದಲ್ಲಿ ಒಂದು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕವಿದೆ. |
+ | * ಎರಡು ವೃತ್ತಗಳು ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುತ್ತವೆ. ಅವು ಎರಡು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ, ಅವು ಎರಡು ಕೇಂದ್ರಗಳನ್ನು ಸಂಪರ್ಕಿಸುವ ಅಕ್ಷಕ್ಕೆ ಸಮ್ಮಿತೀಯವಾಗಿರುತ್ತವೆ. | ||
+ | * ಎರಡು ವೃತ್ತಗಳು ಹೊರಗಿನಿಂದ ಪರಸ್ಪರ ಸ್ಪರ್ಶಿಸುತ್ತವೆಳು(ಬಾಹ್ಯಸ್ಪರ್ಶಿ ವೃತ್ತಗಳು). ಅವು ಮೂರು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ. | ||
+ | * ಎರಡು ವೃತ್ತಗಳು ಪರಸ್ಪರ ಹೊರಗೆ ಇವೆ. ಅವುಗಳು ನಾಲ್ಕು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ. | ||
+ | '''ಸ್ಪರ್ಶಕಗಳ ರಚನೆ''' | ||
KOER ವಲಯಗಳು html 50027288.png | KOER ವಲಯಗಳು html 50027288.png | ||
− | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವನ್ನು | + | ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಲು KOER ವಲಯಗಳು html m520802ec.png |
− | + | ಕೇಂದ್ರಗಳು ‘D’ ಅಂತರದಲ್ಲಿ , ಸಮಾನ ತ್ರಿಜ್ಯದ ಎರಡು ನಿರ್ದಿಷ್ಟ ವೃತ್ತಗಳಿಗೆ ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಸೆಳೆಯಲು. KOER ವಲಯಗಳು html 4b7743eb.png | |
− | ವಿಭಿನ್ನ ತ್ರಿಜ್ಯದ ಎರಡು | + | ವಿಭಿನ್ನ ತ್ರಿಜ್ಯದ ಎರಡು ವೃತ್ತಗಳಿಗೆ ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಲು. KOER ವಲಯಗಳು html 3b9c6f9.png |
− | ಎರಡು | + | ಎರಡು ವೃತ್ತಗಳಿಗೆ ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ನಿರ್ಮಿಸಲು. |
KOER ವಲಯಗಳು html m38f1dae5.png | KOER ವಲಯಗಳು html m38f1dae5.png | ||
− | ''' | + | '''ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು''' |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ಇದರ ಜ್ಞಾನವನ್ನು ಪಡೆದುಕೊಳ್ಳುವುದು | ||
+ | * ಸ್ಪರ್ಶಕಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಕೋನಗಳ ಗುಣಲಕ್ಷಣಗಳು. | ||
+ | * ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲಾದ ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳು ಮತ್ತು ಅವುಗಳ ಅನ್ವಯಗಳು. | ||
+ | * ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಕ ಮತ್ತು ಜ್ಯಾಗಳ ನಡುವಿನ ಕೋನ ಮತ್ತು ಪರ್ಯಾಯ ಖಂಡದಲ್ಲಿನ ಕೋನ ಮತ್ತು ಅದರ ಅನ್ವಯಗಳು. | ||
'''ವಸ್ತು ಮತ್ತು ಸಂಪನ್ಮೂಲಗಳು ಅಗತ್ಯವಿದೆ''' | '''ವಸ್ತು ಮತ್ತು ಸಂಪನ್ಮೂಲಗಳು ಅಗತ್ಯವಿದೆ''' | ||
− | ಪೆನ್ಸಿಲ್, | + | ಪೆನ್ಸಿಲ್, ಕಾಗದ |
'''ಪೂರ್ವ ಅವಶ್ಯಕತೆಗಳು / ಸೂಚನೆಗಳು''' | '''ಪೂರ್ವ ಅವಶ್ಯಕತೆಗಳು / ಸೂಚನೆಗಳು''' | ||
− | ದಯವಿಟ್ಟು | + | ದಯವಿಟ್ಟು 22'''-ಸ್ಪರ್ಶಕಗಳ''' ಕಡತಗಳು: '''2.7 ವೃತ್ತಗಳು''' - '''ಸ್ಪರ್ಶಕ ಚಟುವಟಿಕೆಗಳು'''. ಪಿಡಿಎಫ್ ಕಡತವನ್ನು ನೋಡಿ ಮತ್ತು ಅಭ್ಯಾಸಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ. |
− | ''' | + | '''[[ವೃತ್ತಗಳ ಸ್ಪರ್ಶಕದ ಸಮಸ್ಯೆಗಳು]]''' |
− | '''ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ | + | '''[[ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ರಚನೆ]]''' |
− | ಎರಡು | + | ಎರಡು ವೃತ್ತಗಳಿಗೆ ನೇರವಾದ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಕೇಂದ್ರಗಳ ರೇಖೆಯಲ್ಲಿ ಭೇಟಿಯಾಗುತ್ತವೆ ಮತ್ತು ಅದನ್ನು ತ್ರಿಜ್ಯದ ಅನುಪಾತದಲ್ಲಿ ಬಾಹ್ಯವಾಗಿ ವಿಭಜಿಸುತ್ತವೆ. |
− | ''' | + | '''[[ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ರಚನೆ]]''' |
− | + | ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಕೇಂದ್ರಗಳ ರೇಖೆಯಲ್ಲಿ ಭೇಟಿಯಾಗುತ್ತವೆ ಮತ್ತು ತ್ರಿಜ್ಯದ ಅನುಪಾತದಲ್ಲಿ ಆಂತರಿಕವಾಗಿ ವಿಭಜಿಸುತ್ತವೆ. | |
=ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | =ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು = | ||
− | = | + | == <big>ಹೆಚ್ಚಿನ ಪರಿಶೋಧನೆಗಳು</big> == |
− | + | 1. ಈ ಲಿಂಕ್ ಸ್ಪರ್ಶಕಗಳು ಏಂದರೇನು ಎಂಬುದರ ಬಗ್ಗೆ ಒಂದು ಅವಲೋಕನವನ್ನು ನೀಡುತ್ತದೆನು [[wikipedia:Pi|[4]]], | |
− | + | == <big>ಇದನ್ನು ನೋಡಿ</big> == | |
+ | ವೃತ್ತಗಳ ರಚನೆಯ ಕುರಿತು ಕೆಲವು ಆಸಕ್ತಿದಾಯಕ ವೀಡಿಯೊಗಳಿಗಾಗಿ ಇಲ್ಲಿ [http://www.youtube.com/watch?v=BPTJ9P4vQ78 ಕ್ಲಿಕ್] ಮಾಡಿ. | ||
− | ಕತ್ತರಿಸುವ | + | == <big>ಶಿಕ್ಷಕರ ಕಾರ್ನರ್</big> == |
− | + | ಈ ವಿಷಯದ ಪ್ರಮುಖ ಭಾಗವು '''ರಾಧಾ ಎನ್, ಜಿಹೆಚ್ಎಸ್ ಬೇಗೂರು''' ಮತ್ತು '''ರೂಪಾ ಎನ್ ಜಿಹೆಚ್ಎಸ್ ನೆಲವಗಿಲು''' ರವರ ಕೊಡುಗೆಗಳಾಗಿವೆ. | |
− | ವೃತ್ತಾಕಾರದ ವಿವಿಧ ನಾಣ್ಯಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | + | =ಯೋಜನೆಗಳು = |
− | + | # ವಿವಿಧ ರೀತಿಯ ವೃತ್ತಾಕಾರದ ವಸ್ತುಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | |
− | ಪದಕಗಳ ವಿಭಿನ್ನ ಚಿತ್ರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | + | # ವಿಭಿನ್ನ ಪೈ ಚಾರ್ಟ್ಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ. |
− | + | # ಕತ್ತರಿಸುವ ವೃತ್ತಗಳ ಸಾಧನಗಳ ವಿಭಿನ್ನ ಛಯಾಚಿತ್ರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | |
− | + | # ವೃತ್ತಾಕಾರದ ವಿವಿಧ ನಾಣ್ಯಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | |
+ | # ಪದಕಗಳ ವಿಭಿನ್ನ ಚಿತ್ರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ | ||
+ | == ಗಣಿತ ವಿನೋದ == | ||
'''ಬಳಕೆ''' | '''ಬಳಕೆ''' | ||
ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು <nowiki>{{subst:ಗಣಿತ-ವಿಷಯ}} </nowiki> ಅನ್ನು ಟೈಪ್ ಮಾಡಿ | ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು <nowiki>{{subst:ಗಣಿತ-ವಿಷಯ}} </nowiki> ಅನ್ನು ಟೈಪ್ ಮಾಡಿ | ||
+ | |||
+ | [[ವರ್ಗ:ರೇಖಾಗಣಿತ]] | ||
+ | [[ವರ್ಗ:ತರಗತಿ ೯]] | ||
+ | [[ವರ್ಗ:ತರಗತಿ ೧೦]] |
೧೬:೧೬, ೨೧ ಫೆಬ್ರುವರಿ ೨೦೨೨ ದ ಇತ್ತೀಚಿನ ಆವೃತ್ತಿ
ಗಣಿತದ ತತ್ವಶಾಸ್ತ್ರ |
ಸಂಪನ್ಮೂಲಗಳ ತಯಾರಿಕೆಗೆ ಬೇಕಾಗುವ ತಾಳೆಪಟ್ಟಿಗೆ ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ
ಪರಿಕಲ್ಪನಾ ನಕ್ಷೆ
ಪರಿಚಯ
ಕೆಳಗಿನವು ಶಿಕ್ಷಕರಿಗೆ ಹಿನ್ನೆಲೆ ಸಾಹಿತ್ಯವಾಗಿದೆ. ಈ ವಿಷಯವನ್ನು ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಕಲಿಸಲು ಶಿಕ್ಷಕರಿಗೆ ತಿಳಿದಿರಬೇಕಾದ ವಿಷಯಗಳನ್ನು ಇದು ಸಂಕ್ಷಿಪ್ತಗೊಳಿಸುತ್ತದೆ. ಈ ಸಾಹಿತ್ಯವು ಶಿಕ್ಷಕರಿಗೆ ಪರಿಕಲ್ಪನೆಗಳನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಲು, ಅಗತ್ಯ ಕೌಶಲ್ಯಗಳನ್ನು ಬೆಳೆಸಲು ಮತ್ತು ರೇಖಾಗಣಿತದಲ್ಲಿ ಜ್ಞಾನವನ್ನು ನೀಡಲು ಸಿದ್ಧ ಉಲ್ಲೇಖವಾಗಿದೆ - 6 ನೇ ತರಗತಿಯಿಂದ 10 ನೇ ತರಗತಿಯವರೆಗೆ.
ರೇಖಾಗಣಿತದ ಶಬ್ದಕೋಶವನ್ನು ಬಳಸಿಕೊಂಡು ವೃತ್ತಗಳು ಮತ್ತು ಅದಕ್ಕೆ ಸಂಬಂಧಿತ ಪದಗಳನ್ನು ಹೇಗೆ ವ್ಯಾಖ್ಯಾನಿಸುವುದು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಮೊದಲ ಹಂತವಾಗಿದೆ. ಮುಂದಿನ ಹಂತವೆಂದರೆ ಪೈ ಎಂದರೇನು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ಅದು ಸ್ಥಿರವಾಗಿರುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ವೃತ್ತಕ್ಕೆ ವ್ಯಾಸದ ಸುತ್ತಳತೆಯ ಅನುಪಾತವು ಯಾವಾಗಲೂ ಸ್ಥಿರ ಮೌಲ್ಯ ಪೈ ಆಗಿರುತ್ತದೆ. ಪೈ ನ ಆಸಕ್ತಿದಾಯಕ ಗುಣಲಕ್ಷಣಗಳು - ಅಭಾಗಲಬ್ಧ ಸಂಖ್ಯೆಯನ್ನು ಸಹ ಮೂಲ ರೂಪದಲ್ಲಿ ಚರ್ಚಿಸಬಹುದು. ಮಗುವಿಗೆ ಸರಳ ವಿಸ್ತೀರ್ಣ ಮತ್ತು ಪರಿಧಿಯ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡುವ ಸಾಮರ್ಥ್ಯ. ಮುಂದೆ ಕಲಿಯುವವರು ವೃತ್ತವು 2 ಆಯಾಮದ ಸಮತಲ ಆಕೃತಿ ಮತ್ತು 3 ಆಯಾಮದ ಆಕೃತಿಯನ್ನು ಹೇಗೆ ದೃಶ್ಯೀಕರಿಸುವುದು ಎಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬೇಕು. ಅವುಗಳ ಭಾಗವಾಗಿ ವೃತ್ತವನ್ನು ಹೊಂದಿರುವ ಘನ ಆಕಾರಗಳು ಯಾವುವು. ಕ್ಷೇತ್ರಗಣಿತ - ವೃತ್ತಾಕಾರದ ಆಕಾರಗಳನ್ನು ಒಳಗೊಂಡಿರುವ ಹೆಚ್ಚು ಸಂಕೀರ್ಣ ವಿಸ್ತೀರ್ಣದ ಅಳತೆಗಳು. ಸಿಲಿಂಡರ್, ಗೋಳ ಮತ್ತು ಶಂಕುವಿನಂತಹ ಘನ ಆಕೃತಿಗಳ ಮೇಲ್ಮೈ ವಿಸ್ತೀರ್ಣ ಮತ್ತು ಘನಫಲ. ಪ್ರಮೇಯಗಳನ್ನು ನಿಗಮನವಾಗಿ ಸಾಬೀತುಪಡಿಸುವ ಮೂಲಕ ವೃತ್ತಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ನಿಗಮನ ಪುರಾವೆಗಳ ಕೌಶಲ್ಯಗಳನ್ನು ಸಹ ಪಡೆದುಕೊಳ್ಳುವುದು, ಎಲ್ಲಾ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಮೂಲತತ್ವಗಳಿಂದ ಬರುವುದೆಂಬುದನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು. ರೇಖೆಗಳು ಮತ್ತು ವೃತ್ತಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು - ವೃತ್ತ ಛೇದಕ ಮತ್ತು ಸ್ಪರ್ಶಕ
ಪಠ್ಯಪುಸ್ತಕ
ಪಠ್ಯಪುಸ್ತಕದ ಲಿಂಕ್ ಗಳನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಲು, ದಯವಿಟ್ಟು ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ: (ಉಪ-ಪುಟವನ್ನು ಸೃಷ್ಟಿಸಲು ಇಲ್ಲಿ ಕ್ಲಿಕ್ಕಿಸಿ)
ಮತ್ತಷ್ಟು ಮಾಹಿತಿ
ಮುಕ್ತ ಶೈಕ್ಷಣಿಕ ಸಂಪನ್ಮೂಲಗಳು
- ವೆಬ್ ಸಂಪನ್ಮೂಲಗಳು:
- ಪುಸ್ತಕಗಳು ಮತ್ತು ನಿಯತಕಾಲಿಕಗಳು
- ಪಠ್ಯಪುಸ್ತಕಗಳು
- ಎನ್ಸಿಇಆರ್ಟಿ ಪಠ್ಯಪುಸ್ತಕಗಳು - [1] 9 ನೇ ತರಗತಿ ಗಣಿತ ಭಾಗ-೧ ಮತ್ತು ೧೦ ನೇ ತರಗತಿ ಗಣಿತ ಭಾಗ-೨
- ಪಠ್ಯಕ್ರಮದ ದಾಖಲೆಗಳು
ಮುಕ್ತವಲ್ಲದ ಶೈಕ್ಷಣಿಕ ಸಂಪನ್ಮೂಲಗಳು
- ವೆಬ್ ಸಂಪನ್ಮೂಲಗಳು:
- ಪುಸ್ತಕಗಳು ಮತ್ತು ನಿಯತಕಾಲಿಕಗಳು
- ಪಠ್ಯಪುಸ್ತಕಗಳು - ಕರ್ನಾಟಕ ಸರ್ಕಾರದ ಪಠ್ಯ ಪುಸ್ತಕ - ತರಗತಿ 9
- ಪಠ್ಯಕ್ರಮದ ದಾಖಲೆಗಳು
- ಯೂಟ್ಯೂಬ್ ವೀಡಿಯೊಗಳು
ಉಪಯುಕ್ತ ವೆಬ್ ಸೈಟ್ ಗಳು
೧. ಬಾಹ್ಯ ಬಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಗಳ ರಚನೆ ಮತ್ತು ಅದರ ಮೇಲಿನ ಪ್ರಮೇಯ
೨. ಸ್ಪರ್ಶಕಗಳು, ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು, ಹಾಗು ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಮತ್ತು ಅವುಗಳ ರಚನೆ
ರಚಿಸಿದವರು: ಸುಚೇತ. ಎಸ್, ಸಹಾಯಕ ಶಿಕ್ಷಕಿ, ಜಿ.ಜೆ.ಸಿ, ತ್ಯಾಮಗೊಂಡ್ಲು.
ಉಲ್ಲೇಖಕ್ಕಾಗಿ: ಕರ್ನಾಟಕ ರಾಜ್ಯ ೧೦ ನೆ ತರಗತಿಯ ಪಠ್ಯಪುಸ್ತಕ- ಭಾಗ ೨, ಘಟಕ- ವೃತ್ತಗಳು
ಸಂಬಂಧ ಪುಸ್ತಕಗಳು
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
- ನಮ್ಮ ಸುತ್ತಲೂ ನಾವು ನೋಡುವ ಎಲ್ಲದರ ಆವಿಷ್ಕಾರದಲ್ಲಿ ಒಂದು ಸಂಕೀರ್ಣ ಅಂಶವಾಗಿರುವುವ ವೃತ್ತವನ್ನು ಒಂದು ಪ್ರಮುಖ ಆಕಾರವೆಂದು ಪ್ರಶಂಸಿಸುವುದು.
- ವೃತ್ತವು 2 ಆಯಾಮದ ವೃತ್ತಾಕಾರದ ಸಮತಲ ಆಕೃತಿ ಎಂದು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಿಳಿಸಲು.
- ವೃತ್ತದ ಅಂಚಿನಲ್ಲಿರುವ ಎಲ್ಲಾ ಬಿಂದುಗಳು ಕೇಂದ್ರದಿಂದ ಸಮವಾಗಿರುತ್ತವೆ.
- ವೃತ್ತವನ್ನು ಎಳೆಯುವ ವಿಧಾನ
- ವೃತ್ತದ ಗಾತ್ರವನ್ನು ಅದರ ತ್ರಿಜ್ಯದಿಂದ ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ.
- ಬಳೆ ಅಥವಾ ವೃತ್ತಾಕಾರದ ಉಂಗುರ ಮತ್ತು ವೃತ್ತದ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಹೊರಹೊಮ್ಮಿಸಲು.
ಬೋಧನೆಯ ರೂಪರೇಶಗಳು
ಪರಿಕಲ್ಪನೆ #1 ವೃತ್ತದ ಪರಿಚಯ
ವೃತ್ತಗಳು ಎಲ್ಲಾ ಆವಿಷ್ಕಾರಗಳ ತಾಯಿ ಎಂದು ನಾನು ಜನರಿಗೆ ಹೇಳಿದಾಗ, ಅವರು ಕೇಳುವ ಮೊದಲನೆಯದು, “ವೃತ್ತಗಳು ಆವಿಷ್ಕಾರಗಳೇ?”
ಹೌದು, ವೃತ್ತವು ಪ್ರಕೃತಿಯಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಜನರು ಚಿನ್ನ ಅಥವಾ ಅಮೆರಿಕದ ಹೊಸ ಭೂಮಿಯನ್ನು ಕಂಡುಹಿಡಿದ ವಿಷಯವಲ್ಲ. ಇದು ಮಾನಸಿಕ ರಚನೆಯಾಗಿದೆ, ಇದು ಸಾಂಕೇತಿಕ ಪ್ರಾತಿನಿಧ್ಯವಾಗಿದ್ದು ಅದು ಭಾಷೆ ಮತ್ತು ವರ್ಣಮಾಲೆಯಂತೆಯೇ ಆವಿಷ್ಕರಿಸಲ್ಪಟ್ಟಿದೆ.
ಖಚಿತವಾಗಿ ಹೇಳಲು ಯಾವುದೇ ಮಾರ್ಗವಿಲ್ಲ, ಆದರೆ ಮಾನವಶಾಸ್ತ್ರಜ್ಞರು ಸಾಮಾನ್ಯವಾಗಿ ಈ ವೃತ್ತವನ್ನು ದಾಖಲಿಸಿದ ಇತಿಹಾಸಕ್ಕಿಂತ ಬಹಳ ಹಿಂದೆಯೇ ರಚಿಸಲಾಗಿದೆ ಎಂದು ಒಪ್ಪುತ್ತಾರೆ. ಇದು ಮರಳಿನಲ್ಲಿ ಕೋಲಿನಿಂದ ಚಿತ್ರಿಸಲ್ಪಟ್ಟಿದೆ. ಆರಂಭಿಕ ಮನುಷ್ಯನ ಅಸ್ತಿತ್ವದಲ್ಲಿ ಸೂರ್ಯನು ಸ್ಥಿರವಾಗಿರುವುದರಿಂದ ಮತ್ತು ಎಲ್ಲಾ ಜೀವನದ ಮೂಲವಾಗಿರುವುದರಿಂದ, ಮೊದಲ ವೃತ್ತವು ಸೂರ್ಯನನ್ನು ಪ್ರತಿನಿಧಿಸುವ ಸಾಧ್ಯತೆಯಿದೆ.
ವರ್ಷಗಳಲ್ಲಿ ಯುಕ್ಲಿಡಿಯನ್ ರೇಖಾಗಣಿತವು ತಾಂತ್ರಿಕ ತಿಳುವಳಿಕೆಯ ಕಿರೀಟ ಬಿಂದುವಾಗಿರುವುದರಿಂದ ವೃತ್ತದ ಬಗ್ಗೆ ಮನುಷ್ಯನ ತಿಳುವಳಿಕೆ ಗಣನೀಯವಾಗಿ ಪ್ರಕಟವಾಯಿತು(ಹೊರಹೊಮ್ಮಿತು). (ಇದನ್ನು ಹೇಳಿದ ನಂತರ, ಈ ಪುಟವು (blog) ಗಣಿತ ಅಥವಾ ನೀರಸ ವೈಜ್ಞಾನಿಕ ಸಮೀಕರಣಗಳ ಬಗ್ಗೆ ಆಗುವುದಿಲ್ಲ ಎಂದು ನಾನು ನಿಮಗೆ ಭರವಸೆ ನೀಡುತ್ತೇನೆ.)
ನಾವು ಏನು ಹೇಳುತ್ತೇವೆ ಎಂದರೆ ವೃತ್ತಗಳ ಬಗ್ಗೆ ಮೂಲಭೂತ ತಿಳುವಳಿಕೆಯಿಲ್ಲದಿದ್ದರೆ , ಜಗತ್ತು ಇಂದಿನಂತೆ ಇರುತ್ತಿರಲಿಲ್ಲ. ವೃತ್ತಗಳಿಲ್ಲದಿದ್ದರೆ, ಯಾವುದೇ ಚಕ್ರ ಇರುವುದಿಲ್ಲ, ಇದು ನವಶಿಲಾಯುಗದ (ಕ್ರಿ.ಪೂ. 9500) ಹಿಂದಿನ ಮನುಷ್ಯನ ಕಿರೀಟ ಸಾಧನೆಯಾಗಿದೆ.
ಬೆಂಕಿಯನ್ನು ತಯಾರಿಸುವ ಸಾಮರ್ಥ್ಯ, ಬೆಳೆಗಳ ಕೃಷಿ ಮತ್ತು ಪ್ರಾಣಿಗಳ ಸಾಕುವಿಕೆ ಇತರ ಮೂರು ದೊಡ್ಡ ಸಾಧನೆಗಳು. ಈ ಪ್ರಗತಿಯ ಮೇಲೆ ವೃತ್ತವು ಯಾವುದೇ ನೇರ ಪ್ರಭಾವವನ್ನು ಹೊಂದಿಲ್ಲವಾದರೂ, ವೃತ್ತಗಳ ತಿಳುವಳಿಕೆ ಅವುಗಳ ಪ್ರಸರಣ ಮತ್ತು ವಿಸ್ತರಣೆಗೆ ಖಂಡಿತವಾಗಿಯೂ ಕಾರಣವಾಗಿದೆ.
ಚಕ್ರದ ಹೊರತಾಗಿ, ರಾಟೆಗಳು, ಗೇರುಗಳು, ಹೊರಳುಗುಂಡುಗಳು ಮತ್ತು ನಾವು ತೆಗೆದುಕೊಳ್ಳುವ ಸಾವಿರ ಇತರ ವಸ್ತುಗಳು ಅಸ್ತಿತ್ವದಲ್ಲಿರಲಿಲ್ಲ. ಮತ್ತು ಕಾರನ್ನು ಓಡಿಸುವ, ಫೆರ್ರಿಸ್ ಚಕ್ರ ಸವಾರಿ ಮಾಡುವ ಅಥವಾ ನಮ್ಮ ಟೆಲಿವಿಷನ್ ಸೆಟ್ನಲ್ಲಿ ಚಂದ್ರ ಇಳಿಯುವುದನ್ನು ನೋಡುವ ಆನಂದ ನಮಗೆ ಎಂದಿಗೂ ಇರುವುತ್ತಿರಲಿಲ್ಲ.
ನೀವು ಯಾವುದೇ ಹಳೆಯ ಹಕ್ಕಿನ ಪತ್ರದ (patent claim) ಮೂಲಕ ನೋಡಿದರೆ, ವೃತ್ತಗಳು, ಗೋಳಗಳು, ವಕ್ರಾಕೃತಿಗಳು, ಕಮಾನುಗಳು ಇತ್ಯಾದಿಗಳ ಪುನರಾವರ್ತಿತ ಬಳಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಾಗಿ ಕಾಣಬಹುದು. ನಮ್ಮ ಸುತ್ತಲೂ ನಾವು ನೋಡುವ ಬಹುತೇಕ ಎಲ್ಲದರ ಆವಿಷ್ಕಾರದಲ್ಲಿ ಅವು ಒಂದು ಆಂತರಿಕ ಅಂಶವಾಗಿದೆ.
ಸೂಕ್ಷ್ಮ ಜೀವಶಾಸ್ತ್ರಜ್ಞರು ಅವರ ಕ್ಷೇತ್ರವು ವೃತ್ತಗಳಿಗೆ ಹೆಚ್ಚು ಉಪಯೋಗವನ್ನು ಹೊಂದಿಲ್ಲ ಎಂದು ನನಗೆ ಸವಾಲು ಹಾಕಿದ್ದರು. ಸೂಕ್ಷ್ಮ ಜೀವವಿಜ್ಞಾನದ ಬಗ್ಗೆ ಏನೂ ತಿಳಿಯದೆ, ಅವನ ಸೂಕ್ಷ್ಮದರ್ಶಕದಲ್ಲಿ ಮಸೂರದ ಆಕಾರ ಏನು ಎಂದು ನಾನು ಕೇಳಿದೆ.ಗ
ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ವಿನ್ಯಾಸಕರರ ಮೂಲ ಸಾಧನವಾಗಿದೆ. ಇದನ್ನು ಮಾನವಕುಲದ ಇತಿಹಾಸದಲ್ಲಿ ಶ್ರೇಷ್ಠ ಕಲಾವಿದರು ಮತ್ತು ವಾಸ್ತುಶಿಲ್ಪಿಗಳು ಬಳಸುತ್ತಾರೆ.
ಮತ್ತು ಇದು ನಮ್ಮ ಮಾನಸಿಕ ರಚನೆಯನ್ನು ಹೊರತುಪಡಿಸಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಸಂಕೇತ, ಒಂದು ವಿಷಯವಲ್ಲ. ನಾವು ಭೂಮಿಯ ಮೇಲೆ ಪ್ರತಿಯೊಂದು ಭಾಷೆಯಲ್ಲೂ ಅದರ ಬಗ್ಗೆ ಮಾತನಾಡುತ್ತೇವೆ. ಇದನ್ನು ಲಕ್ಷಾಂತರ ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿ ಮತ್ತು ಅಂತರ್ಜಾಲದಾದ್ಯಂತ ಬರೆಯಲಾಗಿದೆ, ಆದರೆ ನಾವು ಅದನ್ನು ಚಕ್ರದ ಕೊಳವೆಯಲ್ಲಿ (wheel barrel)ಹಾಕಲು ಸಾಧ್ಯವಿಲ್ಲ. ಇದು ಮೂರು ಆಯಾಮದ ಜಗತ್ತಿನಲ್ಲಿ ಅಥವಾ ಎರಡು ಆಯಾಮದ ಜಗತ್ತಿನಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಇದು ಕೇವಲ ಪ್ರಾತಿನಿಧ್ಯವಾಗಿದೆ.
ಇಮ್ಯಾನ್ಯುಯೆಲ್ ಕಾಂಟ್ ಅವರ ಪ್ರಸಿದ್ಧ ನುಡಿಗಟ್ಟು “ಡಿಂಗ್ ಎ ಸಿಚ್” (“ding an sich” )ವೃತ್ತಕ್ಕೆ ಅನ್ವಯಿಸುತ್ತದೆ. ವೃತ್ತವು "ಸ್ವತಃ ವಿಷಯ"( “thing-in-itself”) ಅಲ್ಲ. ಇದು ನಮ್ಮ ಕಲ್ಪನೆಯಲ್ಲಿ ಮಾತ್ರ ಇರುವ ಒಂದು ಶಬ್ದಾರ್ಥದ ಕಟ್ಟುಕಥೆ. ಜನರಲ್ ಸೆಮ್ಯಾಂಟಿಕ್ಸ್ನ ತಂದೆ ಆಲ್ಫ್ರೆಡ್ ಕೊರ್ಜಿಬ್ಸ್ಕಿ ಹೇಳುವಂತೆ, ಇದು “ನಕ್ಷೆ, ಪ್ರದೇಶವಲ್ಲ.”
ಆದರೆ ಇಲ್ಲಿ ನಾವು ಭವಿಷ್ಯದ ಪುಟ (blog-ಬ್ಲಾಗ್) ಪ್ರವೇಶಕ್ಕೆ ಒಳಪಡಬಹುದಾದ ತಾತ್ವಿಕ ಸ್ಪರ್ಶಕದಿಂದ ಹೊರಬರುತ್ತಿದ್ದೇವೆ. ಇದೀಗ ಎಲ್ಲವೂ ವೃತ್ತಗಳು ಮತ್ತು ಅವು ಏನೂ ಅಲ್ಲ ಎಂದು ಹೇಳೋಣ. ಅವು ವಾಸ್ತವದಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ ಮತ್ತು ಇನ್ನೂ ಮಾನವಕುಲವು ಅಸ್ತಿತ್ವಕ್ಕೆ ತಂದ ಎಲ್ಲದಕ್ಕೂ ಅವು ಆಧಾರವಾಗಿವೆ. ಅದಕ್ಕಾಗಿಯೇ ವೃತ್ತವು ತುಂಬಾ ಅದ್ಭುತವಾಗಿದೆ ಎಂದು ನಾನು ಭಾವಿಸುತ್ತೇನೆ.
ಮೂಲ: http://circlesonly.wordpress.com/tag/inventions/
ಸಾರಾಂಶ: ಈ ವೃತ್ತವು ಎಲ್ಲಾ ಮಾನವ ಆವಿಷ್ಕಾರಗಳಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನ ಮತ್ತು ಮೂಲಭೂತವಾಗಿದೆ, ಮತ್ತು ಅದೇ ಸಮಯದಲ್ಲಿ, ಅತ್ಯಂತ ಕ್ರಿಯಾತ್ಮಕವಾಗಿದೆ. ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಅಡಿಪಾಯದಲ್ಲಿ ಇದು ಮೂಲಾಧಾರವಾಗಿದೆ. ಇದು ಎಲ್ಲಾ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ವಿನ್ಯಾಸಕರರ ಮೂಲ ಸಾಧನವಾಗಿದೆ. ಇದನ್ನು ಮಾನವಕುಲದ ಇತಿಹಾಸದಲ್ಲಿ ಶ್ರೇಷ್ಠ ಕಲಾವಿದರು ಮತ್ತು ವಾಸ್ತುಶಿಲ್ಪಿಗಳು ಬಳಸುತ್ತಾರೆ. ವೃತ್ತಾಕಾರದ ಆಕಾರವಿಲ್ಲದೆ ಚಕ್ರ, ರಾಟೆಗಳು, ಗೇರುಗಳು, ಹೊರಳುಗುಂಡುಗಳು ಮತ್ತು ನಾವು ತೆಗೆದುಕೊಳ್ಳುವ ಸಾವಿರ ಇತರ ವಸ್ತುಗಳು ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. ಮತ್ತು ಖಂಡಿತವಾಗಿಯೂ ನಾವು ಕಾರನ್ನು ಓಡಿಸುವ, ದೈತ್ಯ ಚಕ್ರವನ್ನು ಸವಾರಿ ಮಾಡುವ ಅಥವಾ ನಮ್ಮ ಟೆಲಿವಿಷನ್ ಸೆಟ್ನಲ್ಲಿ ಚಂದ್ರ ಇಳಿಯುವುದನ್ನು ನೋಡುವ ಆನಂದವನ್ನು ಎಂದಿಗೂ ಹೊಂದಿರುವುದಿಲ್ಲ.
ನೀವು ಯಾವುದೇ ಹಳೆಯ ಹಕ್ಕಿನ ಪತ್ರದ (patent claim) ಮೂಲಕ ನೋಡಿದರೆ, ವೃತ್ತಗಳು, ಗೋಳಗಳು, ವಕ್ರಾಕೃತಿಗಳು, ಕಮಾನುಗಳು ಇತ್ಯಾದಿಗಳ ಪುನರಾವರ್ತಿತ ಬಳಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಾಗಿ ಕಾಣಬಹುದು. ಎಲ್ಲವೂ ವೃತ್ತಗಳು ಮತ್ತು ಅವು ಏನೂ ಅಲ್ಲ. ಅವು ವಾಸ್ತವದಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ ಮತ್ತು ಇನ್ನೂ ಮಾನವಕುಲವು ಅಸ್ತಿತ್ವಕ್ಕೆ ತಂದ ಎಲ್ಲದಕ್ಕೂ ಅವು ಆಧಾರವಾಗಿವೆ. ಅದಕ್ಕಾಗಿಯೇ ಒಂದು ವೃತ್ತವು ತುಂಬಾ ಅದ್ಭುತವಾಗಿದೆ.
ವೃತ್ತದ ಗುಣಲಕ್ಷಣಗಳು
- ವೃತ್ತವು ಸಮತಲದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಸಂಗ್ರಹವಾಗಿದೆ, ಅವು ಸಮತಲದ ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ ಸಮದೂರದಲ್ಲಿರುತ್ತವೆ.
- ವೃತ್ತದ ಸಮ ಜ್ಯಾಗಳು (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಸಮವಾದ ಕೇಂದ್ರ ಕೋನಗಳನ್ನು ರೂಪಿಸುತ್ತವೆ.
- ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ (ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಎರಡು ಜ್ಯಾಗಳಿಂದ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಉಂಟಾದ ಕೋನಗಳು ಸಮವಾಗಿದ್ದರೆ, ಖಂಡಗಳು ಸಮವಾಗಿರುತ್ತದೆ.
- ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಜ್ಯಾ ಗೆ ಎಳೆದ ಲಂಬವು ಜ್ಯಾವನ್ನು ಅರ್ಧಿಸುತ್ತದೆ.
- ಜ್ಯಾ ವನ್ನು ಅರ್ಧಿಸಲು ವೃತ್ತದ ಕೇಂದ್ರದ ಮೂಲಕ ಎಳೆಯುವ ರೇಖೆಯು ಜ್ಯಾ ಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ.
- ಮೂರು ಸರಳಾರೇಖಾಗತವಲ್ಲದ ಬಿಂದುಗಳ ಮೂಲಕ ಹಾದುಹೋಗುವಂತೆ ಒಂದು ಮತ್ತು ಒಂದೇ ಒಂದು ವೃತ್ತವಿರಲು ಮಾತ್ರ ಸಾಧ್ಯ.
- ವೃತ್ತದಲ್ಲಿ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಸಮಾನ ಜ್ಯಾಗಳು ಕೇಂದ್ರದಿಂದ (ಅಥವಾ ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಸಮಾನ ದೂರದಲ್ಲಿರುತ್ತವೆ.
- ವೃತ್ತದಲ್ಲಿ (ಅಥವಾ ಸರ್ವಸಮ ವೃತ್ತಗಳು) ಕೇಂದ್ರದಿಂದ (ಅಥವಾ ಅನುರೂಪ ಕೇಂದ್ರಗಳು) ಸಮಾನ ದೂರದಲ್ಲಿರುವ ಜ್ಯಾಗಳು ಉದ್ದದಲ್ಲಿ ಸಮವಾಗಿರುತ್ತದೆ.
- ವೃತ್ತದ ಎರಡು ಕಂಸಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಅನುರೂಪ ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ ಮತ್ತು ವಿಲೋಮವಾಗಿ ವೃತ್ತದ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಅನುರೂಪ ಕಂಸಗಳು (ಲಘು, ಆಧಿಕ) ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ.
- ವೃತ್ತದ ಸರ್ವಸಮವಾದ ಕಂಸಗಳು ಕೇಂದ್ರದಲ್ಲಿ ಸಮಾನ ಕೋನಗಳನ್ನು ರೂಪಿಸುತ್ತವೆ.
- ಒಂದು ಕಂಸದಿಂದಾಗಿ ವೃತ್ತಕೇಂದ್ರದಲ್ಲಿ ಏರ್ಪಟ್ಟ ಕೋನವು ಅದೇ ಕಂಸದಿಂದಾಗಿ ವೃತ್ತದ ಇತರ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಏರ್ಪಟ್ಟ ಕೋನದ ಎರಡರಷ್ಟಿದೆ.
- ವೃತ್ತದ ಒಂದೇ ಖಂಡದಲ್ಲಿ ಉಂಟಾದ ಕೋನಗಳು ಸಮವಾಗಿರುತ್ತವೆ.
- ಅರ್ಧವೃತ್ತ ಖಂಡದಲ್ಲಿ ಏರ್ಪಡುವ ಕೋನವು ಲಂಬ ಕೋನವಾಗಿರುತ್ತದೆ.
- ಎರಡು ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡವು ಅದರ ಒಂದೇ ಬದಿಯಲ್ಲಿರುವ ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಸಮಾನದ ಕೋನಗಳನ್ನು ಏರ್ಪಡಿಸಿದರೆ, ಆ ನಾಲ್ಕು ಬಿಂದುಗಳು ವೃತ್ತದ ಮೇಲಿರುತ್ತದೆ.
- ಒಂದು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತ 180 ಡಿಗ್ರಿ ಆಗಿರುತ್ತದೆ.
- ಚತುರ್ಭುಜದ ಒಂದು ಜೊತೆ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತ 180 ಡಿಗ್ರಿ ಆಗಿದ್ದರೆ, ಚತುರ್ಭುಜವು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದವಾಗಿರುತ್ತದೆ.
ಚಟುವಟಿಕೆಗಳು #
"ವೃತ್ತಾಕಾರದ ಅಕೃತಿಯಿಲ್ಲದ ಜೀವನ" ಕುರಿತು ಚರ್ಚೆ.
ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ಪ್ರದೇಶಗಳಲ್ಲಿ ಕಂಡುಬರುವ ವೃತ್ತಾಕಾರದ ಆಕಾರಗಳನ್ನು ಸಂಬಂಧಿಸಲು ಮತ್ತು ಸಂಯೋಜಿಸಲು ಚಟುವಟಿಕೆ ಆಧಾರಿತ ಚರ್ಚೆ.
ವೃತ್ತವು ಸಮತಲದಲ್ಲಿರುವ ಎಲ್ಲಾ ಬಿಂದುಗಳ ಗುಂಪಾಗಿದ್ದು ಅದು ಸ್ಥಿರ ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ಅಂತರವಾಗಿರುತ್ತದೆ.
ವೃತ್ತವು ಬಹುಭುಜಾಕೃತಿಯೇ? - ಒಂದು ಚರ್ಚೆ
ಬಾಹುಗಳ ಸಂಖ್ಯೆಯು ಹೆಚ್ಚಾದಾಗ ಬಹುಭುಜಾಕೃತಿಯು ವೃತ್ತವನ್ನು ರೂಪಿಸುತ್ತದೆ - ಆಸಕ್ತಿದಾಯಕ ಚಟುವಟಿಕೆ.
ಏಕಕೇಂದ್ರದಲ್ಲಿ ವೃತ್ತಗಳನ್ನು ಚಿತ್ರಿಸುವುದು, ಈ ಕರ-ನಿರತ ಚಟುವಟಿಕೆಯ ವೃತ್ತವು ಆಕಾರವೆಂದು ಮತ್ತು ಅದರ ವ್ಯತ್ಯಾಸಗಳನ್ನು ಪರಿಶೋಧಿಸಲಾಗುತ್ತದೆ.
ಸಮವಿರುವ ವೃತ್ತಗಳು ಒಂದೇ ತ್ರಿಜ್ಯ ಹೊಂದಿರುವ ವೃತ್ತಗಳಾಗಿರುತ್ತವೆ, ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ಪರಿಚಯಿಸಲಾದ ಪರಿಕಲ್ಪನೆಗಳು.
ವೃತ್ತವನ್ನು ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸುವುದು ಮತ್ತು ಅದನ್ನು ಸಮಾನ ಭಾಗಗಳಾಗಿ ವಿಂಗಡಿಸಲು ಅನ್ವೇಷಿಸುವುದನ್ನು ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.
ಪೈ ಗಣಿತದ ಸ್ಥಿರ ಮೌಲ್ಯ
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು :
ವೃತ್ತದ ಸುತ್ತಳತೆಯ ಅನುಪಾತವು ಅದರ ವ್ಯಾಸಕ್ಕೆ ಸ್ಥಿರ ಮೌಲ್ಯ ಎಂದು ತೋರಿಸಿ - ಪೈ
ಬೇಕಾಗುವ ಸಂಪನ್ಮೂಲಗಳು :
ಪ್ರೊಜೆಕ್ಟರ್, ಪೆನ್ಸಿಲ್, ಪೇಪರ್
ಪೂರ್ವ ಅವಶ್ಯಕತೆಗಳು / ಸೂಚನೆಗಳು, ಇದ್ದರೆ:
ಮೊದಲು ವೃತ್ತದ ವ್ಯಾಸ 1 ಘಟಕದ ಜಿಯೋಜೆಬ್ರಾ ಫೈಲ್ ಅನ್ನು ತೋರಿಸಿ
ಪೈ ಮೌಲ್ಯವನ್ನು ಪ್ರದರ್ಶಿಸಲು ಕನಿಷ್ಠ ಹೆಸರಿನ ಜಾರುಕವನ್ನು ಕನಿಷ್ಠದಿಂದ ಗರಿಷ್ಠ ಮೌಲ್ಯಕ್ಕೆ ಸರಿಸಿ ಮತ್ತು ಸುತ್ತಳತೆಯನ್ನು ಗಮನಿಸಿ
ಮೌಲ್ಯಮಾಪನ
ಜಿಯೋಜೆಬ್ರಾ ಫೈಲ್ [2] ಅನ್ನು ಬಳಸಿ ಮತ್ತು ತ್ರಿಜ್ಯ ಜಾರುಕವನ್ನು ಚಲಿಸುವ ಮೂಲಕ ಮತ್ತು ಮೌಲ್ಯಗಳನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಲು ಕೆಳಗಿನ ಕೋಷ್ಟಕವನ್ನು ಬಳಸಿಕೊಂಡು ವಿಭಿನ್ನ ತ್ರಿಜ್ಯಗಳಿಗೆ ಅನುಪಾತವು ನಿಜವೆಂದು ವಿವರಿಸಿ ಮತ್ತು ಪರಿಶೀಲಿಸಿ.
ವೃತ್ತದ ತ್ರಿಜ್ಯ r | ವೃತ್ತದ ಪರಿಧಿ C | C/2r |
6 | 18.85 | - |
2.5 | 15.71 | - |
......... | - | - |
ಚಟುವಟಿಕೆಗಳು # ವೃತ್ತದ ಪರಿಧಿ
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು : ನಿಜ ಜೀವನದ ಉದಾಹರಣೆಯಲ್ಲಿ ವೃತ್ತದ ಪರಿಧಿಯನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡುವ ಬಳಕೆಯನ್ನು ಅನ್ವಯಿಸಲು.
ಅಂದಾಜು ಸಮಯ: ೨೦ ನಿಮಿಷಗಳು
ಬೇಕಾಗುವ ಪದಾರ್ಥಗಳು ಅಥವ ಸಂಪನ್ಮೂಲಗಳು : ಪೆನ್ಸಿಲ್, ಕಾಗದ
ಪೂರ್ವಾಪೇಕ್ಷಿತ/ ಸೂಚನೆಗಳು , ಇದ್ದರೆ : ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು (ಸ್ಕೆಚ್) ಅನ್ನು ರಚಿಸಿ ಮತ್ತು ಮೌಲ್ಯಮಾಪನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ. ಚಿತ್ರ ಪ್ರಮಾಣಿತ 400 ಮೀಟರ್ ಚಾಲನೆಯಲ್ಲಿರುವ ಟ್ರ್ಯಾಕ್ ನ ಎರಡು ಮುಖ್ಯ ಆಯಾಮಗಳನ್ನು ತೋರಿಸುತ್ತಿದೆ.
ಮೌಲ್ಯ ನಿರ್ಣಯ ಪ್ರಶ್ನೆಗಳು
- ಈ ಆಕಾರದ ಒಳಗಿನ ಪರಿಧಿಯನ್ನು ಲೆಕ್ಕಹಾಕಿ.
- ಇದು 400 ಮೀಟರ್ಗೆ ಸಮನಾಗಿಲ್ಲ ಎಂದು ನೀವು ಏಕೆ ಭಾವಿಸುತ್ತೀರಿ? ಒಳಗಿನ ಓಟಗಾರನು ಲೇನ್ ನ ತುದಿಯಲ್ಲಿ ಓಡಲಾರನು (ಸಾಮಾನ್ಯವಾಗಿ ಒಳಗಿನ ದಂಡೆ ಇರುತ್ತದೆ) ಆದರೆ ಕ್ರೀಡಾಪಟು ಒಳಗಿನ ಅಂಚಿನಿಂದ x ಸೆಂ.ಮೀ ದೂರದಲ್ಲಿ ಸ್ಥಿರ ದೂರದಲ್ಲಿ ಓಡುತ್ತಾನೆ ಎಂದು ಬಾವಿಸೋಣ.
- ಒಳಗಿನ ಲೇನ್ನಲ್ಲಿ ಕ್ರೀಡಾಪಟು ಓಡುವ ಎರಡು ವೃತ್ತಾಕಾರದ ಭಾಗಗಳ ತ್ರಿಜ್ಯ ಎಷ್ಟು?
- ಸೆಂಟಿಮೀಟರ್ಗಳಲ್ಲಿ ಪ್ರಯಾಣಿಸಿದ ಒಟ್ಟು ದೂರವು 2 π (3650 + x) + 16878 ಎಂದು ತೋರಿಸಿ ಮತ್ತು x ಗೆ ಮೌಲ್ಯವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಇದನ್ನು 40 000 ಸೆಂ.ಮೀ.ಗೆ ಸಮೀಕರಿಸಿ.
- ಇದು ವಾಸ್ತವಿಕವೇ? 200 ಮೀ ಮತ್ತು 400 ಮೀ ಓಟಗಳಿಗೆ, ಓಟಗಾರರು ನಿರ್ದಿಷ್ಟ ಲೇನ್ಗಳಲ್ಲಿ ಓಡುತ್ತಾರೆ. ಪ್ರಾರಂಭದ ಸ್ಥಾನಗಳು ಸ್ಥಗಿತಗೊಳ್ಳದ ಹೊರತು ನೀವು ಮತ್ತಷ್ಟು ಓಡಬೇಕು ಎಂಬುದು ಸ್ಪಷ್ಟ.
- ಪ್ರತಿ ಲೇನ್ನ ಅಗಲವು 1.22 ಮೀ, ಮತ್ತು ಎಲ್ಲಾ ಓಟಗಾರರು (ಒಳಗಿನವರನ್ನು ಹೊರತುಪಡಿಸಿ) ತಮ್ಮ ಲೇನ್ಗಳ ಒಳಗಿನಿಂದ ಸುಮಾರು 20 ಸೆಂ.ಮೀ ಓಡುತ್ತಾರೆ ಎಂದು ಭಾವಿಸಲಾಗಿದೆ.
- ಈ ಭಾವನೆಗಳೊಂದಿಗೆ, ಒಂದು ಸಂಪೂರ್ಣ ಲ್ಯಾಪ್ ಅನ್ನು ಚಲಾಯಿಸುವಾಗ ಲೇನ್ 2 ನಲ್ಲಿನ ಕ್ರೀಡಾಪಟು ಏಷ್ಟು ದೂರವನ್ನು ಆವರಿಸುತ್ತಾನೆ? ಆದ್ದರಿಂದ 400 ಮೀ ಓಟಕ್ಕೆ ಅಗತ್ಯವಾದುದನ್ನು ಊಹಿಸಿ.
- ಲೇನ್ 3 ನಲ್ಲಿ ಓಡುವ ಯಾರಿಗಾದರೂ ಏನಾಗಬೇಕು?
- 400 ಮೀ ಓಟದಲ್ಲಿ 8 ಓಟಗಾರರು ಇದ್ದರೆ, ಲೇನ್ 8 ರಲ್ಲಿ ಕ್ರೀಡಾಪಟುವಿನ ಸ್ಟಾಗರ್ (stagger) ಏನು?
ಲೇನ್ 1 ಗೆ ಇದನ್ನು ಹೋಲಿಕೆ ಮಾಡಿ? ಲೇನ್ 1 ರಲ್ಲಿರುವುದರಿಂದ ಏನಾದರೂ ಪ್ರಯೋಜನವಿದೆಯೇ?
ಹೆಚ್ಚಿನ ಪರಿಶೋಧನೆಗಳು:
1. ಈ ಲಿಂಕ್ ಪೈ ಎಂದರೇನು ಎಂಬುದರ ಒಂದು ಅವಲೋಕನವನ್ನು ನೀಡುತ್ತದೆ. [3]
ಪರಿಕಲ್ಪನೆ # 2 ವೃತ್ತಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು
ಚಟುವಟಿಕೆಗಳು
ವೃತ್ತದಲ್ಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳು ಒಂದು ಬಿಂದುವಿನಿಂದ ನಿಗದಿತ ದೂರದಲ್ಲಿರುತ್ತವೆ, ಅದು ವೃತ್ತದ ಕೇಂದ್ರವಾಗಿರುತ್ತದೆ.
ವೃತ್ತದ ತ್ರಿಜ್ಯ ಮತ್ತು ವ್ಯಾಸವನ್ನು ಗುರುತಿಸುವುದು ಮತ್ತು ಅವುಗಳ ಸಂಬಂಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು.
ಆಕಾರದ ಪರಿಧಿಯನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸುತ್ತಳತೆಯನ್ನು ಅಳೆಯುವುದು.
ವೃತ್ತವನ್ನು ಎರಡು ಭಾಗಗಳಾಗಿ ವಿಭಜಿಸಿ ವ್ಯಾಸವನ್ನು ಎಳೆಯುವ ಮೂಲಕ ಅರ್ಧವೃತ್ತಗಳನ್ನು ರೂಪಿಸುತ್ತದೆ.
ಅದರ ಪರಿಧಿಯೊಳಗಿನ ವೃತ್ತದ ಒಳ ಸಮತಲದಲ್ಲಿರುವ ಬಿಂದುಗಳು ಆಂತರಿಕ ಬಿಂದುಗಳು ಮತ್ತು ಪರಿಧಿಯ ಹೊರಭಾಗದಲ್ಲಿರುವ ಬಿಂದುಗಳು ಅದರ ಬಾಹ್ಯ ಬಿಂದುಗಳು ಎಂದು ಹೇಳಲಾಗುತ್ತದೆ.
ವೃತ್ತಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಮೂಲ ನಿಯತಾಂಕಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ವಿಚಾರಣೆ.
ವೃತ್ತದ ಜ್ಯಾಗಳು ವಿಭಿನ್ನ ಅಳತೆಗಳಲ್ಲಿರುತ್ತವೆ. ಜ್ಯಾ ದ ಉದ್ದವು ಕೇಂದ್ರಕ್ಕೆ ಹತ್ತಿರವಾಗುತ್ತಿದ್ದಂತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ ಮತ್ತು ಅದು ಕೇಂದ್ರದಿಂದ ದೂರ ಹೋಗುವಾಗ ಕಡಿಮೆಯಾಗುತ್ತದೆ.
ಎರಡೂ ದಿಕ್ಕುಗಳಲ್ಲಿನ ಎರಡು ಬಿಂದುಗಳೊಳಗಿನ ಪರಿಧಿಯ ಭಾಗವನ್ನು ಅದರ ಕಂಸಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.
ಯಾವುದೇ ಎರಡು ತ್ರಿಜ್ಯಗಳ ನಡುವೆ ಸುತ್ತುವರಿದ ವೃತ್ತದ ಭಾಗವನ್ನು ವೃತ್ತಖಂಡ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಅರ್ಧವೃತ್ತ ಮತ್ತು ಚತುರ್ಥವು ವಿಶೇಷ ರೀತಿಯ ಕ್ಷೇತ್ರಗಳಾಗಿವೆ.
ಪರಿಕಲ್ಪನೆ # 3: ವಲಯಗಳು ಮತ್ತು ರೇಖೆಗಳು
ಚಟುವಟಿಕೆಗಳು
ಜ್ಯಾ ವು ವೃತ್ತದಲ್ಲಿ ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳನ್ನು ಸೇರುವ ಮಧ್ಯಂತರವಾಗಿದೆ. ಈ ಚಟುವಟಿಕೆಯು ಜ್ಯಾದ ರಚನೆಯನ್ನು ತನಿಖೆ ಮಾಡುತ್ತದೆ ಮತ್ತು ವೃತ್ತದ ವ್ಯಾಸದೊಂದಿಗೆ ಹೋಲಿಸುತ್ತದೆ.
ಚಟುವಟಿಕೆ 1 ಒಂದೇ ವೃತ್ತಖಂಡದಲ್ಲಿನ ಕೋನಗಳು ಸಮಾನವಾಗಿರುತ್ತದೆ.
ಸ್ಪರ್ಶಕವು ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ರೇಖೆ. ವೃತ್ತಛೇದಕ ಎನ್ನುವುದು ವೃತ್ತದ ಮೇಲೆ ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳ ಮೂಲಕ ಹಾದುಹೋಗುವ ರೇಖೆಯಾಗಿದೆ.
ಪರಿಕಲ್ಪನೆ # 4: ಪ್ರಮೇಯಗಳು ಮತ್ತು ಗುಣಲಕ್ಷಣಗಳು
ಜ್ಯಾ ವು ವೃತ್ತದ ಸುತ್ತಳತೆಯ ಮೇಲೆ 2 ಬಿಂದುಗಳನ್ನು ಸೇರುವ ನೇರ ರೇಖೆ. ವೃತ್ತದೊಳಗಿನ ಜ್ಯಾ ಗಳು ಹಲವು ವಿಧಗಳಲ್ಲಿ ಸಂಬಂಧ ಹೊಂದಿವೆ.
ವೃತ್ತದ ಜ್ಯಾ ಗಳನ್ನು ಒಳಗೊಂಡಿರುವ ಪ್ರಮೇಯಗಳು ಹೀಗಿವೆ:
- ಜ್ಯಾದ ಲಂಬಾರ್ಧಕವು ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಹಾದುಹೋಗುತ್ತದೆ.
- ಸರ್ವಸಮ ಜ್ಯಾಗಳು ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ.
- ವೃತ್ತದಲ್ಲಿನ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವುಗಳ ಪ್ರತಿಬಂಧಿತ ಕಂಸಗಳು ಸರ್ವಸಮವಾಗಿರುತ್ತದೆ.
- ವೃತ್ತದಲ್ಲಿನ ಎರಡು ಜ್ಯಾಗಳು ಸರ್ವಸಮವಾಗಿದ್ದರೆ, ಅವು ಎರಡು ಕೇಂದ್ರ ಕೋನಗಳನ್ನು ಸರ್ವಸಮವಾಗಿ ನಿರ್ಧರಿಸುತ್ತವೆ.
ಚಟುವಟಿಕೆಗಳು :
ವೃತ್ತದ ಕೇಂದ್ರಕ್ಕೆ ಜ್ಯಾದ ಉದ್ದ ಮತ್ತು ಅದರ ದೂರ
ಜ್ಯಾಕ್ಕೆ ಕೇಂದ್ರದಿಂದ ದೂರವು ಜ್ಯಾದ ಲಂಬವಾದ ಅಂತರವಾಗಿದ್ದು ಅದು ಕೇಂದ್ರದ ಮೂಲಕ ಹಾದುಹೋಗುತ್ತದೆ.
ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಉದ್ದವಾದ ಜ್ಯಾ ಹಾದುಹೋಗುತ್ತದೆ
ವ್ಯಾಸವನ್ನು ತನಿಖೆ ಮಾಡುವುದು, ವೃತ್ತದ ಉದ್ದದ ಜ್ಯಾವಾಗಿದೆ.
ಜ್ಯಾ ದ ಲಂಬಾರ್ಧಕವು ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಹಾದುಹೋಗುತ್ತದೆ
ಪ್ರತಿಯೊಂದು ಲಂಬಾರ್ಧಕವು ಕೇಂದ್ರದ ಮೂಲಕ ಹಾದುಹೋಗುವುದರಿಂದ, ಕೇಂದ್ರವು ಪ್ರತಿಯೊಂದರ ಮೇಲೆಯೂ ಇರಬೇಕು, ಆದ್ದರಿಂದ ಕೇಂದ್ರವು ಅವುಗಳ ಏಕೈಕ ಸಾಮಾನ್ಯ ಬಿಂದುವಾಗಿರಬೇಕು.
ಕೇಂದ್ರದಿಂದ ಲಂಬವು ಜ್ಯಾವನ್ನು ಅರ್ಧಿಸುತ್ತದೆ
ಸರ್ವಸಮ ಜ್ಯಾ ಗಳು ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ
ಒಂದೇ ವೃತ್ತದಲ್ಲಿ ಅಥವಾ ಸಮ ತ್ರಿಜ್ಯದ ವೃತ್ತಗಳಲ್ಲಿ:
- ಸಮ ಜ್ಯಾಗಳು ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುತ್ತವೆ.
- ಇದಕ್ಕೆ ವಿಲೋಮವಾಗಿ, ಕೇಂದ್ರದಿಂದ ಸಮ ದೂರದಲ್ಲಿರುವ ಜ್ಯಾಗಳು ಸಮವಾಗಿರುತ್ತದೆ.
ಜ್ಯಾದಿಂದ ರೂಪುಗೊಂಡಿರುವ ವೃತ್ತದಲ್ಲಿನ ಕೋನಗಳು
ಜ್ಯಾ ದ ಕೊನೆಯ ಬಿಂದುಗಳಲ್ಲಿ ತ್ರಿಜ್ಯದಿಂದ ವೃತ್ತದ ಕೇಂದ್ರದಲ್ಲಿ ಉಂಟಾದ ಕೋನವನ್ನು ಕೇಂದ್ರ ಕೋನ ಅಥವಾ ಜ್ಯಾದಿಂದ ರೂಪುಗೊಂಡಿರುವ ವೃತ್ತದಲ್ಲಿನ ಕೋನಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.
ಪರಿಕಲ್ಪನೆ #5 ಚಕ್ರೀಯ ಚತುರ್ಭುಜಗಳು
ಯೂಕ್ಲಿಡಿಯನ್ ರೇಖಾಗಣಿತದಲ್ಲಿ, ಚಕ್ರೀಯ ಚತುರ್ಭುಜ ಅಥವಾ inscribed ಚತುರ್ಭುಜವು ಚತುರ್ಭುಜವಾಗಿದ್ದು, ಇದರ ಶೃಂಗಗಳು ಒಂದೇ ವೃತ್ತದ ಮೇಲಿರುತ್ತವೆ. ಈ ವೃತ್ತವನ್ನು ವೃತ್ತಾಕಾರ (circumcircle)ಅಥವಾ ಸುತ್ತುವರಿದ ವೃತ್ತ (circumscribed circle) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ, ಮತ್ತು ಶೃಂಗಗಳನ್ನು concyclic ಎಂದು ಹೇಳಲಾಗುತ್ತದೆ.
ಚಟುವಟಿಕೆಗಳು
ಚತುರ್ಭುಜ ABCD ಯನ್ನು ಅದರ ನಾಲ್ಕು ಶೃಂಗಗಳು ವೃತ್ತದ ಮೇಲೆ ಇದ್ದರೆ ಅದನ್ನು ಚಕ್ರೀಯ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಒಂದು ಚಕ್ರೀಯ ಚತುರ್ಭುಜದಲ್ಲಿ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತವು 180 ಡಿಗ್ರಿಗಳಷ್ಟಿರುತ್ತದೆ. ಚತುರ್ಭುಜದ ಒಂದು ಜೋಡಿ ಅಭಿಮುಖ ಕೋನಗಳ ಮೊತ್ತವು 180 ಡಿಗ್ರಿ ಆಗಿದ್ದರೆ, ಚತುರ್ಭುಜವು ಚಕ್ರೀಯವಾಗಿರುತ್ತದೆ ಚಕ್ರೀಯ ಚತುರ್ಭುಜದಲ್ಲಿ ಬಾಹ್ಯ ಕೋನವು ಆಂತರಿಕ ಅಭಿಮುಖ ಕೋನಕ್ಕೆ ಸಮಾನವಾಗಿರುತ್ತದೆ.
ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಕೋನಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಈ ಕರ-ನಿರತ ಚಟುವಟಿಕೆಯಿಂದ ಪರಿಶೋಧಿಸಲಾಗುತ್ತದೆ.
ಪರಿಕಲ್ಪನೆ # 6 ವೃತ್ತಗಳ ರಚನೆಗಳು
ಸ್ಪರ್ಶಕವು ಒಂದು ಮತ್ತು ಏಕೈಕ ಬಿಂದುವಿನಲ್ಲಿ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸುವ ಸರಳ ರೇಖೆ ಎಂದು ವಿದ್ಯಾರ್ಥಿಗಳು ತಿಳಿದಿರಬೇಕು. ಸ್ಪರ್ಶಕವು ವೃತ್ತದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂದು ಅವರು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬೇಕು. ಸ್ಪರ್ಶಕದ ರಚನೆಯ ಶಿಷ್ಟಚಾರ. ಸ್ಪರ್ಶಕವನ್ನು ವೃತ್ತದ ಒಂದು ಬಿಂದುವಿಗೆ ರಚಿಸುವುದು. ಒಂದು ದೂರದಲ್ಲಿ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳನ್ನು ರಚಿಸುವುದು. ಎರಡು ವೃತ್ತಗಳಿಗೆ ಸಾಮಾನ್ಯವಾದ ಸ್ಪರ್ಶಕವನ್ನು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಒಂದೇ ಪಾರ್ಶ್ವದಲ್ಲಿ ವೃತ್ತಗಳಿದ್ದರೆ ಆ ಸ್ಪರ್ಶಕವನ್ನು ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಉಭಯ ಪಾರ್ಶ್ವಗಳಲ್ಲಿ ವೃತ್ತಗಳಿದ್ದರೆ ಆ ಸ್ಪರ್ಶಕವನ್ನು ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.
ಪರಿಕಲ್ಪನೆ # 7 ವೃತ್ತದ ಸ್ಪರ್ಶಕಗಳು
ನಿಖರವಾಗಿ ಒಂದು ಹಂತದಲ್ಲಿ ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ರೇಖೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ ಮತ್ತು ಅದು ವೃತ್ತವನ್ನು ಮುಟ್ಟುವ ಸ್ಥಳವನ್ನು ಸ್ಪರ್ಶ ಬಿಂದು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.
ಸ್ಪರ್ಶಕದ ಗುಣಲಕ್ಷಣಗಳು
ಯಾವುದೇ ವೃತ್ತದಲ್ಲಿ ತ್ರಿಜ್ಯ ಮತ್ತು ಸ್ಪರ್ಶಕಗಳು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಪರಸ್ಪರ ಲಂಬವಾಗಿರುತ್ತದೆ. ವೃತ್ತದ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಒಂದೇ ಒಂದು ಸ್ಪರ್ಶಕ ಇರಬಹುದು ಎಂದು ನಾವು ತೀರ್ಮಾನಿಸಬಹುದು.
- ಒಂದು ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಖಂಡಗಳು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶವಾಗಿದ್ದರೆ ಅವು ಸರ್ವಸಮವಾಗಿರುತ್ತವೆ ಎಂಬ ಪ್ರಮೇಯವನ್ನು ವಿವರಿಸಿ.
- ಸ್ಪರ್ಶಕಗಳನ್ನು ಒಳಗೊಂಡ ಸಮಸ್ಯೆಯನ್ನು ಪರಿಹರಿಸಿ.
- ವೃತ್ತದ ಸುತ್ತುವರಿದ ತ್ರಿಭುಜಗಳನ್ನು ಒಳಗೊಂಡ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಅನ್ವಯಿಸಿ.
ವೃತ್ತದ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳು
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಸ್ಪರ್ಶಕಗಳ ಉದ್ದಗಳು ಸಮಾನವಾಗಿರುತ್ತದೆ.
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟ ಸ್ಪರ್ಶಕಗಳು ವೃತ್ತದ ಕೇಂದ್ರ ಬಿಂದುವನ್ನು ಸೇರುವ ರೇಖೆಗೆ ಸಮಾನವಾಗಿ ತೋರುತ್ತವೆ.
ವೃತ್ತಛೇದಕ
ವೃತ್ತವನ್ನು ಎರಡು ವಿಭಿನ್ನ ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುವ ರೇಖೆಯನ್ನು ವೃತ್ತಛೇದಕ ರೇಖೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ (ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ವೃತ್ತಛೇದಕ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ).
ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು
ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ರೇಖೆಗಳು ಅಥವಾ ಖಂಡಗಳಾಗಿವೆ, ಅದು ಒಂದೇ ಸಮಯದಲ್ಲಿ ಒಂದು ವೃತ್ತಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವಾಗುತ್ತದೆ.
ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು
ವೃತ್ತಗಳ ಕೇಂದ್ರಗಳು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ಒಂದೇ ಪಾರ್ಶ್ವದಲ್ಲಿರುತ್ತವೆ. (Dct)
ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು
ವೃತ್ತಗಳ ಕೇಂದ್ರಗಳು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ (tct) ಉಭಯ ಪಾರ್ಶ್ವಗಳಲ್ಲಿರುತ್ತವೆ.
ಮೌಲ್ಯಮಾಪನ
1. 2 ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳಿಗೆ ಮತ್ತು 2 ಪ್ರತ್ಯೇಕ ವೃತ್ತಗಳಿಗೆ ಎಷ್ಟು ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು?
2. ನೀವು 2 ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳಿಗೆ ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದೇ?
3. ವೃತ್ತಛೇದಕಗೆ ಸಮಾಂತರವಾಗಿರುವ ವೃತ್ತಕ್ಕೆ ಎಷ್ಟು ಸಂಖ್ಯೆ ಸ್ಪರ್ಶಕಗಳಿರುತ್ತವೆ?
4. ವೃತ್ತದೊಳಗಿನ ಬಿಂದುವಿನ ಮೂಲಕ ಎಷ್ಟು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು?
ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳ ಪುರಾವೆಗಳು ಮತ್ತು ಪರಿಶೀಲನೆ
ತಾರ್ಕಿಕತೆಯ ಸರಿಯಾದ ಬಳಕೆಯು ಗಣಿತಶಾಸ್ತ್ರದ ಅಂತರಂಗದಲ್ಲಿದೆ, ವಿಶೇಷವಾಗಿ ಪುರಾವೆಗಳನ್ನು ನಿರ್ಮಿಸುವಲ್ಲಿ. ಅನೇಕ ಹೇಳಿಕೆಗಳು, ವಿಶೇಷವಾಗಿ ರೇಖಾಗಣಿತದಲ್ಲಿ. ಒಂದು ಪುರಾವೆಯು ಹಲವಾರು ಗಣಿತದ ಹೇಳಿಕೆಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿದೆ ಎಂಬುದನ್ನು ನೆನಪಿಸಿಕೊಳ್ಳಿ, ಪ್ರತಿಯೊಂದನ್ನು ತಾರ್ಕಿಕವಾಗಿ ಪುರಾವೆಗಳಲ್ಲಿನ ಹಿಂದಿನ ಹೇಳಿಕೆಯಿಂದ ಅಥವಾ ಮೊದಲೇ ಸಾಬೀತಾದ ಪ್ರಮೇಯದಿಂದ ಅಥವಾ ಆಧಾರಸೂತ್ರ(ಸಿದ್ಧಸೂತ್ರ)ದಿಂದ ಅಥವಾ ಕಲ್ಪಿತ ಸಿದ್ಧಾಂತಗಳಿಂದ ನಿರ್ಣಯಿಸಲಾಗುತ್ತದೆ. ಪುರಾವೆಯನ್ನು ರಚಿಸಲು ನಾವು ಬಳಸುವ ಮುಖ್ಯ ಸಾಧನವೆಂದರೆ ನಿಗಮನ ತಾರ್ಕಿಕ ಪ್ರಕ್ರಿಯೆ.
ನಾವು ಈ ಅಧ್ಯಾಯದ ಅಧ್ಯಯನವನ್ನು ಹಲವಾರು ಉದಾಹರಣೆಗಳನ್ನು ಬಳಸಿಕೊಂಡು ನಿಗಮನ ತಾರ್ಕಿಕ ಕ್ರಿಯೆಯಲ್ಲಿ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ.
ಪ್ರಾಯೋಗಿಕ ನಿರ್ಮಾಣದ ಮೂಲಕ ಮತ್ತು ಜಿಯೋಜಿಬ್ರಾ ಉಪಕರಣವನ್ನು ಬಳಸುವ ಮೂಲಕ ನಾವು ಪ್ರಮೇಯಗಳನ್ನು ಪರಿಶೀಲಿಸಬಹುದು.
ವೃತ್ತಗಳಿಗೆ ಸ್ಪರ್ಶಕಗಳು:
ಸ್ಪರ್ಶಕ: ವೃತ್ತವನ್ನು ನಿಖರವಾಗಿ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಿಸುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ಬಿಂದು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ
ವೃತ್ತದ ಕೇಂದ್ರದಿಂದ ಸ್ಪರ್ಶಕ ಬಿಂದುವಿಗಿನ ತ್ರಿಜ್ಯವು ಯಾವಾಗಲೂ ಸ್ಪರ್ಶಕ ರೇಖೆಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ.
ತ್ರಿಜ್ಯವು ರೇಖೆಗೆ ಲಂಬವಾಗಿಲ್ಲವೆಂದರೆ, ರೇಖೆಯು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವಾಗಿರುವುದಿಲ್ಲ.
ಪೈಥಾಗರಿಯನ್ ಪ್ರಮೇಯವನ್ನು ನೆನಪಿಸಿಕೊಳ್ಳಿ:
ಮೂರನೆಯ ಮೌಲ್ಯಕ್ಕೆ ಪರಿಹರಿಸಲು ಸ್ಪರ್ಶಕ ರೇಖೆ ಮತ್ತು ಸ್ಪರ್ಶ ಬಿಂದುವಿನ ಮೂಲಕ ತ್ರಿಜ್ಯವು ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂಬ ಅಂಶವನ್ನು ಬಳಸಿ. ಒಂದು ನಿರ್ದಿಷ್ಟ ವಲಯಕ್ಕೆ ಒಂದು ರೇಖೆಯು ಸ್ಪರ್ಶವಾಗಿದೆಯೆ ಅಥವಾ ಇಲ್ಲವೇ ಎಂಬುದನ್ನು ನಿರ್ಣಯಿಸಲು ನೀವು ಈ ಆಧಾರವನ್ನು ಹೇಗೆ ಬಳಸಬಹುದು ಎಂಬುದನ್ನು ತೋರಿಸಿ.
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಸ್ಪರ್ಶಕಗಳ ಉದ್ದವು ಸಮಾನವಾಗಿರುತ್ತದೆ.
ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳ ರಚನೆಗಳು ಮತ್ತು ಅದರ ಗುಣಲಕ್ಷಣಗಳು
ಸ್ಪರ್ಶಕಗಳ ವಿಧಗಳು
- ವೃತ್ತಛೇದಕ ಮತ್ತು ವೃತ್ತದ ಸ್ಪರ್ಶಕ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಗುರುತಿಸಿ.
- ವೃತ್ತದ ಮೇಲೆ ಒಂದು ನಿರ್ದಿಷ್ಟ ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಕವನ್ನು ರಚಿಸಿ.
- ರಚಿಸಿ ಮತ್ತು ಅದನ್ನು ಪರಿಶೀಲಿಸಿ, ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆಯಲಾದ ತ್ರಿಜ್ಯವು ಸ್ಪರ್ಶಕಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ.
- ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕಗಳನ್ನು ರಚಿಸಿ.
- ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಮತ್ತು ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಗುರುತಿಸಿ.
ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತಗಳು
ಎರಡು ವೃತ್ತಗಳ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು, ಎರಡು ವೃತ್ತಗಳು ಎಷ್ಟು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ?. 0, 1, 2, 3, 4 ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳೊಂದಿಗೆ ಅನೌಪಚಾರಿಕವಾಗಿ ಎಲ್ಲಾ ವಿಭಿನ್ನ ಪ್ರಕರಣಗಳನ್ನು ಎಳೆಯಿರಿ.
ಯಾವುದೇ ಎರಡು ವಿಭಿನ್ನ ವೃತ್ತಗಳಿಗೆ, ಅವುಗಳ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಐದು ಸಾಧ್ಯತೆಗಳಿವೆ:
- ಒಂದು ವೃತ್ತವು ಇನ್ನೊಂದರೊಳಗೆ ಇರುತ್ತದೆ. ಅವುಗಳಿಗೆ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳಿಲ್ಲ.
- ಒಂದು ವೃತ್ತವು ಇನ್ನೊಂದನ್ನು ಒಳಗಿನಿಂದ ಮುಟ್ಟುತ್ತದೆ(ಅಂತಃಸ್ಪರ್ಶಿ ವ್ರತ್ತಗಳು). ಈ ಸ್ಪರ್ಶದ ಹಂತದಲ್ಲಿ ಒಂದು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕವಿದೆ.
- ಎರಡು ವೃತ್ತಗಳು ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುತ್ತವೆ. ಅವು ಎರಡು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ, ಅವು ಎರಡು ಕೇಂದ್ರಗಳನ್ನು ಸಂಪರ್ಕಿಸುವ ಅಕ್ಷಕ್ಕೆ ಸಮ್ಮಿತೀಯವಾಗಿರುತ್ತವೆ.
- ಎರಡು ವೃತ್ತಗಳು ಹೊರಗಿನಿಂದ ಪರಸ್ಪರ ಸ್ಪರ್ಶಿಸುತ್ತವೆಳು(ಬಾಹ್ಯಸ್ಪರ್ಶಿ ವೃತ್ತಗಳು). ಅವು ಮೂರು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿವೆ.
- ಎರಡು ವೃತ್ತಗಳು ಪರಸ್ಪರ ಹೊರಗೆ ಇವೆ. ಅವುಗಳು ನಾಲ್ಕು ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ.
ಸ್ಪರ್ಶಕಗಳ ರಚನೆ
KOER ವಲಯಗಳು html 50027288.png
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಲು KOER ವಲಯಗಳು html m520802ec.png
ಕೇಂದ್ರಗಳು ‘D’ ಅಂತರದಲ್ಲಿ , ಸಮಾನ ತ್ರಿಜ್ಯದ ಎರಡು ನಿರ್ದಿಷ್ಟ ವೃತ್ತಗಳಿಗೆ ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ಸೆಳೆಯಲು. KOER ವಲಯಗಳು html 4b7743eb.png
ವಿಭಿನ್ನ ತ್ರಿಜ್ಯದ ಎರಡು ವೃತ್ತಗಳಿಗೆ ನೇರ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಲು. KOER ವಲಯಗಳು html 3b9c6f9.png
ಎರಡು ವೃತ್ತಗಳಿಗೆ ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳನ್ನು ನಿರ್ಮಿಸಲು.
KOER ವಲಯಗಳು html m38f1dae5.png
ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು
ಇದರ ಜ್ಞಾನವನ್ನು ಪಡೆದುಕೊಳ್ಳುವುದು
- ಸ್ಪರ್ಶಕಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಕೋನಗಳ ಗುಣಲಕ್ಷಣಗಳು.
- ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲಾದ ಸ್ಪರ್ಶಕಗಳ ಗುಣಲಕ್ಷಣಗಳು ಮತ್ತು ಅವುಗಳ ಅನ್ವಯಗಳು.
- ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಸ್ಪರ್ಶಕ ಮತ್ತು ಜ್ಯಾಗಳ ನಡುವಿನ ಕೋನ ಮತ್ತು ಪರ್ಯಾಯ ಖಂಡದಲ್ಲಿನ ಕೋನ ಮತ್ತು ಅದರ ಅನ್ವಯಗಳು.
ವಸ್ತು ಮತ್ತು ಸಂಪನ್ಮೂಲಗಳು ಅಗತ್ಯವಿದೆ
ಪೆನ್ಸಿಲ್, ಕಾಗದ
ಪೂರ್ವ ಅವಶ್ಯಕತೆಗಳು / ಸೂಚನೆಗಳು
ದಯವಿಟ್ಟು 22-ಸ್ಪರ್ಶಕಗಳ ಕಡತಗಳು: 2.7 ವೃತ್ತಗಳು - ಸ್ಪರ್ಶಕ ಚಟುವಟಿಕೆಗಳು. ಪಿಡಿಎಫ್ ಕಡತವನ್ನು ನೋಡಿ ಮತ್ತು ಅಭ್ಯಾಸಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ.
ಎರಡು ವೃತ್ತಗಳಿಗೆ ನೇರವಾದ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಕೇಂದ್ರಗಳ ರೇಖೆಯಲ್ಲಿ ಭೇಟಿಯಾಗುತ್ತವೆ ಮತ್ತು ಅದನ್ನು ತ್ರಿಜ್ಯದ ಅನುಪಾತದಲ್ಲಿ ಬಾಹ್ಯವಾಗಿ ವಿಭಜಿಸುತ್ತವೆ.
ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕದ ರಚನೆ
ವ್ಯತ್ಯಸ್ತ ಸಾಮಾನ್ಯ ಸ್ಪರ್ಶಕಗಳು ಕೇಂದ್ರಗಳ ರೇಖೆಯಲ್ಲಿ ಭೇಟಿಯಾಗುತ್ತವೆ ಮತ್ತು ತ್ರಿಜ್ಯದ ಅನುಪಾತದಲ್ಲಿ ಆಂತರಿಕವಾಗಿ ವಿಭಜಿಸುತ್ತವೆ.
ಕಠಿಣ ಸಮಸ್ಯೆಗಳಿಗೆ ಸುಳಿವುಗಳು
ಹೆಚ್ಚಿನ ಪರಿಶೋಧನೆಗಳು
1. ಈ ಲಿಂಕ್ ಸ್ಪರ್ಶಕಗಳು ಏಂದರೇನು ಎಂಬುದರ ಬಗ್ಗೆ ಒಂದು ಅವಲೋಕನವನ್ನು ನೀಡುತ್ತದೆನು [4],
ಇದನ್ನು ನೋಡಿ
ವೃತ್ತಗಳ ರಚನೆಯ ಕುರಿತು ಕೆಲವು ಆಸಕ್ತಿದಾಯಕ ವೀಡಿಯೊಗಳಿಗಾಗಿ ಇಲ್ಲಿ ಕ್ಲಿಕ್ ಮಾಡಿ.
ಶಿಕ್ಷಕರ ಕಾರ್ನರ್
ಈ ವಿಷಯದ ಪ್ರಮುಖ ಭಾಗವು ರಾಧಾ ಎನ್, ಜಿಹೆಚ್ಎಸ್ ಬೇಗೂರು ಮತ್ತು ರೂಪಾ ಎನ್ ಜಿಹೆಚ್ಎಸ್ ನೆಲವಗಿಲು ರವರ ಕೊಡುಗೆಗಳಾಗಿವೆ.
ಯೋಜನೆಗಳು
- ವಿವಿಧ ರೀತಿಯ ವೃತ್ತಾಕಾರದ ವಸ್ತುಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ
- ವಿಭಿನ್ನ ಪೈ ಚಾರ್ಟ್ಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ.
- ಕತ್ತರಿಸುವ ವೃತ್ತಗಳ ಸಾಧನಗಳ ವಿಭಿನ್ನ ಛಯಾಚಿತ್ರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ
- ವೃತ್ತಾಕಾರದ ವಿವಿಧ ನಾಣ್ಯಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ
- ಪದಕಗಳ ವಿಭಿನ್ನ ಚಿತ್ರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿ
ಗಣಿತ ವಿನೋದ
ಬಳಕೆ
ಈ ಟೆಂಪ್ಲೇಟನ್ನು ಬಳಸಲು ಹೊಸ ಪುಟವನ್ನು ಸೃಷ್ಠಿಸಲು {{subst:ಗಣಿತ-ವಿಷಯ}} ಅನ್ನು ಟೈಪ್ ಮಾಡಿ